Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

INCREASE OF QUALITY OF BIOMETHANE USED FOR HYDROGEN SYNTHESIS

https://doi.org/10.15518/isjaee.2017.10-12.045-054

Abstract

The paper studies the features of biomass energy use and presents the main directions of biogas application. It is shown the connection between the main indicators of biogas quality and the possibility of its use in various technological processes. The relevance of improving the quality of biomethane used for synthesis of high purity hydrogen is substantiated. The classification of the methods for separation and purification of methane-containing gas mixtures is given, their advantages and disadvantages are analyzed. Comparative characteristics of the presented methods for cleaning quality, specific energy costs, and design features are given. A method of short cycle free adsorption for bio-gas purification is proposed as the most economically feasible for small capacity plants. The main types of industrial adsorbents are considered. The dependence of sorption properties on the effective pore diameters of sorbent materials is shown. The distinctive features of adsorption in microporous structures are noted. The most significant of these features is the high value of the adsorption energy in comparison with adsorption materials having larger pores in the structure. Among microporous adsorbents, zeolites are identified as the most promising. The adsorption properties of synthetic and natural zeolites are analyzed. The theoretical bases of the adsorption purification processes are considered, the adsorption competition of the main macrocomponents of the gas mixture being cleaned is evaluated. The scheme of the experimental installation and the process of separation and purification of biogas using natural zeolite as an adsorbent are described. The results of application of a natural zeolite for the production of high purity biomethane due to purification from water vapor, hydrogen sulphide and adsorption of carbon dioxide are presented. The conversion of biomethane to hydrogen was noted as the most promising direction of biomass energy use, the advantages of using natural zeolites for obtaining high purity biomethane are shown.


About the Author

A. V. Sadchikov
Orenburg State University
Russian Federation

Ph.D. (engineering), Associate Professor



References

1. Belyaev L.S., Marchenko O.V., Solomin S.V. Issledovanie dolgosrochnykh tendentsii razvitiya energetiki Rossii i mira. Izvestiya RAN. Energetika, 2011;2:3−11 (in Russ.).

2. Sadchikov A.V. Degazatsiya poligonov tverdykh kommunal'nykh otkhodov. Fundamental'nye issledovaniya, 2017;2:72−76 (in Russ.).

3. Sadchikov A.V. Obespechenie energeticheskoi nezavisimosti i ekologicheskoi bezopasnosti poligonov (TKO). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;(15−18):104−111 (in Russ.).

4. Efendiev A.M., Nikolaev Yu.E., Evstaf'ev D.P. Vozmozhnosti energoobespecheniya fermerskikh khozyaistv na baze malykh vozobnovlyae-mykh istochnikov energii. Teploenergetika, 2016;(2):38−45 (in Russ.).

5. Sadchikov, A. V. Konversiya biometana v vodorod na biogazovoi stantsii, ispol'zuyushchei kombiniro-vannoe zagruzochnoe syr'e. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;(19−20):62−68 (in Russ.).

6. Dunikov D.O. Perspektivnye tekhnologii ispol'zovaniya biovodoroda v energoustanovkakh na baze toplivnykh elementov. Teploenergetika, 2013;3:48−57 (in Russ.).

7. Grigor'ev S.A. Energoustanovka s kogeneratsiei elektrichestva i tepla na osnove vozobnovlyaemykh istochnikov energii i elektrokhimicheskikh vodorodnykh system. Teploenergetika, 2015;2:3−10 (in Russ.).

8. Ponomarev-Stepnoi N.N., Stolyarevskii A.Ya. Atomno-vodorodnaya energetika. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2004;(3):5−10 (in Russ.).

9. Chekalov, L.N. Diffuzionnye sposoby gazorazdeleniya na polimernykh membranakh. / L.N. Chekalov, O.G. Galakin. – Moscow: TsINTI Khimneftemash Publ., 1976, pp. 34 (in Russ.).

10. Tirak'yan A.S., Makarenko S.F., Kostrov Yu.A. Razdelenie gazovykh smesei s pomoshch'yu membran iz polykh volokon. Khimvolokno, 1988, pp. 26 (in Russ.).

11. Briman I.M., Leites I.L. Eksergeticheskii analiz tekhnologicheskikh skhem membrannogo razdeleniya gazovykh smesei. Tekhnologiya khimicheskoi promyshlennosti, 1988;8:462–466 (in Russ.).

12. Shumyatskii Yu.I. Adsorbtsionnyi protsess kak edinoe tseloe. Khim. prom., 1988;8:490−493 (in Russ.).

13. Akulov, A.K. Osobennosti protsessov v ustanovkakh adsorbtsionnogo razdeleniya vozdukha. Tekhnicheskie gazy, 2006;6:39–42 (in Russ.).

14. Ivanova E.N. Adsorbenty dlya polucheniya kisloroda metodom korotkotsiklovoi beznagrevnoi adsorbtsii: Ph.D. Dissertation (engineering), Moscow, 2016, p. 11 (in Russ.).

15. Shumyatskii Yu.I. Tipy i printsipy organizatsii beznagrevnykh adsorbtsionnykh protsessov ochistki i razdeleniya gazovykh smesei. Khim. prom., 1989;8:586−590 (in Russ.).

16. Mehrotra A., Ebner A.D., Ritter J.A. Arithmetic approach for complex PSA cycle scheduling. Adsorption, 2010;16(3):113–126 (in Eng.).

17. Agarwal A., Biegler L.T., Zitney S.E. A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capteffectively captureure. AIChE Journal, 2010;56(7):1813–1828.

18. Mehrotra A., Ebner A.D., Ritter J.A. Simplified graphical approach for complex PSA cycle scheduling. Adsorption, 2011;17(2):337–345.

19. Betlem B.H.L., Gotink R.W.M., Bosch H. Optimal operation of rapid pressure swing adsorption with slop recycling. Computers and Chemical Engineering, 1998;22(1):S633–S636.

20. Alekhina M.B. Promyshlennye adsorbenty: uchebnoe posobie. RKhTU im. D.I. Mendeleeva Publ., 2007. pp. 113−115 (in Russ.).

21. Brek D. Tseolitovye molekulyarnye sita. Mos-cow: Mir Publ., 1976, 781 p. (in Russ.).

22. Bibarsov V.Yu. Effektivnost' ispol'zovaniya tseolita v ratsionakh bychkov pri vyrashchivanii na myaso: Ph.D. dissertation (agriculture). Orenburg, 2004, p. 5 (in Russ.).

23. Skarstrom C.W. Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption, US Pat. 1960. No. 2, 444, 627 (in Eng.).

24. Matveikin V.G. [et al.] Matematicheskoe modelirovanie i upravlenie protsessom korotkotsiklovoi adsorbtsii. Moscow: Izdatel'stvo Mashinostroenie-1 Publ., 2007, 140 p. (in Russ.).

25. Nilchan S., Pantelides C.C. On the Optimisation of Periodic Adsorbtion Processes. Adsorbtion, 1998;4:113–147.

26. Shumyatskii Yu.I. Promyshlennye adsorbtsionnye protsessy. Moscow: Koloss Publ., 2009, 183 p. (in Russ.).

27. Ltd “Akvakhim” [E-resource]. Available at: http://him-kazan.ru/katalog/sinteticheskie-i-prirodnyieczeolityi (10.11.2016) (in Russ.).


Review

For citations:


Sadchikov A.V. INCREASE OF QUALITY OF BIOMETHANE USED FOR HYDROGEN SYNTHESIS. Alternative Energy and Ecology (ISJAEE). 2017;(10-12):45-54. (In Russ.) https://doi.org/10.15518/isjaee.2017.10-12.045-054

Views: 736


ISSN 1608-8298 (Print)