Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

THE STUDY OF THE HYDROGEN PRODUCTION DURING THE MAGNESIUM OXIDATION IN AQUEOUS SALT SOLUTIONS AT TEMPERATURES RANGING FROM –40 ºC TO +20 ºC

https://doi.org/10.15518/isjaee.2017.10-12.063-074

Abstract

The paper is devoted to the investigation of hydrogen production from magnesium oxidation in aqueous salt solutions under low temperature conditions. This study determines the solution compositions suitable for effective low-temperature magnesium oxidation with hydrogen production, and the reaction rate dependence on temperature. A number of experiments were conducted using various solution compositions. The obtained experimental results can be very useful when developing a hydrogen production system. The experimental data obtained demonstrate that at temperature of 0ºC magnesium conversion for MgCl2 solution is equal to 94,5%, for AlCl3 – 84,5%; at –20 ºC for MgCl2 – 32,5%, for AlCl3 – 65,1%; at –40ºC for AlCl3 – 85,2%. Moreover the paper demonstrates that oxidation of magnesium powder in some aqueous solutions provides hydrogen production with high hydrogen yields even at low temperatures. The results of this study can be used for designing power supply systems which can operate in Arctic regions and provide electricity supply to drones (at 6,000 m above the sea level, Tambient = –24 ºC).

 

 

About the Authors

O. A. Buryakovskaya
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Junior Researcher



S. S. Ryzhkova
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation
Intern Researcher


M. S. Vlaskin
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation
Ph.D. (engineering), Head of the Energy Accumulating Materials Laboratory


References

1. Nosyrev I. Light, but not lightweight (Legkii, no ne legkovesnyi). Russkaya planeta: internet journal. – 2016. – Available at: http://rusplt.ru/sdelanorusskimi/legkiy-no-ne-legkovesnyiy-22818.html (04.04.2016) (in Russ.).

2. Popel O.S., Kiseleva S.V., Morgunova M.O., Gabderakhmanova T.S., Tarasenko A.B. Use of renewable energy sources for energy supply to consumers in the Arctic zone of the Russian Federation (Ispol'zovanie vozobnovlyaemykh istochnikov energii dlya energosnabzheniya potrebitelei v Arkticheskoi zone Rossiiskoi Federatsii). Arktika: ekologiya i ekonomika, 2015;1(17);64–69 (in Russ.).

3. Alinejad B., Mahmoodi K.A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. Int. J. Hydrogen Energy, 2009;34:7934–38 (in Eng.).

4. Mahmoodi K., Alinejad B.Enhancement of hydrogen generation rate in reaction of aluminum with water. Int. J. Hydrogen Energy, 2010;35:5227–5232 (in Eng.).

5. Huang X., Gao T., Pan X., Wei D., Lv Ch., Qin L., Huang Yu. A Review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. J. Power Sources, 2013;229:133– 140 (in Eng.).

6. Parmuzina A.V., Kravchenko O.V. Activation of aluminium metal to evolve hydrogen from water. Int. J. Hydrogen Energy, 2008;33:3073–3076 (in Eng.).

7. Ilyukhina A.V., Ilyukhin A.S., Shkolnikov E.I. Hydrogen generation from water by means of activated aluminum. Int. J. Hydrogen Energy, 2012;37:16382– 16387 (in Eng.).

8. Rosenband V., Gany A. Application of activated aluminum powder for generation of hydrogen from water. Int. J. Hydrogen Energy, 2010;35:10898–10904 (in Eng.).

9. Aleksandrov Y.A. Tsyganova E.I., Pisarev A.L. Reaction of aluminum with dilute aqueous NaOh solutions. Russ. J. Gen. Chem., 2003;73:689–694 (in Eng.).

10. Soler L., Macanás J., Muñoz M., Casado J. Hydrogen generation from aluminum in a non-consumable potassium hydroxide solution. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 13–15, 2005, pp. 1–7. Available at: www.researchgate.net/profile/Lluis_Soler/publication/260 134148_Proceedings_International_Hydrogen_Energy_C ongress_and_Exhibition_IHEC_2005/links/54c753ed0cf2 89f0ceccf629.pdf (in Eng.)

11. Ambaryan G.N., Dudoladov A.O., Meshkov E.A., Vlaskin M.S., Zhuk A.Z., Shkolnikov E.A. Generation of hydrogen by oxidation of aluminum in a low-concentration aqueous solution of potassium alkali with intensive mixing (Generatsiya vodoroda putem okisleniya alyuminiya v nizkokontsentrirovannom vodnom rastvore kalievoi shchelochi pri intensivnom peremeshivanii). International scientific journal for Alternative Energy and Ecology (ISJAEE), 2015;(23):95– 104 (in Russ.).

12. Ambaryan G.N., Vlaskin M.S., Dudoladov A.O., Meshkov E.A., Zhuk A.Z., Shkolnikov E.I. Hydrogen generation by oxidation of coarse aluminum in low content alkali aqueous solution under intensive mixing. Int. J. Hydrogen Energy, 2016;41:17216–17224 (in Eng.).

13. Fan M.Q., Sun L.X., Xu F. Study of the controllable reactivity of aluminum alloys and their promising application for hydrogen generation. Energy Conversion and Management, 2010;51:594–599 (in Eng.).

14. Kravchenko O.V., Semenenko K.N., Bulychev B.M., Kalmykov K.B. Activation of aluminum metal and its reaction with water. Journal of Alloys and Compounds, 2005;397:58–62 (in Eng.).

15. FanM.Q., Xu F., Sun L.X. Hydrogen generation by hydrolysis reaction of ball-milled Al-Bi alloys. Energy Conversion and Management, 2007;21(4):2294–2298 (in Eng.).

16. Deng Z.Y., Tang Y.B., Zhu L.L., Sakka Y., Ye J.H. Effect of different modification agents on hydrogen-generation by the reaction of Al with water. Int. J. Hydrogen Energy, 2010;35:9561–9568 (in Eng.).

17. Wang H.-W., Chung H.-W., Teng H.-T., Cao G.Z. Generation of hydrogen from aluminum and water-Effect of metal oxide nanocrystals and water quality. Int. J. Hydrogen Energy, 2011;36:15136–15144 (in Eng.).

18. Huang X.N., Lv C.J., Wang Y., Shen H.Y., Chen D., Huang Y.X. Hydrogen generation from hydrolysis of aluminum/graphite composites with a core-shell structure. Int. J. Hydrogen Energy, 2012;37:7457–7463 (in Eng.).

19. Bersh A.V., Lisitsyn A.V., Sorokovikov A.I., Vlaskin M.S., Mazalov Yu.A., Shkolnikov E.I Study of the processes of hydrogen-hydrogen mixture generation in the hydrothermal aluminum oxidation reactor for power plants (Issledovanie protsessov generatsii parovodorodnoi smesi v reaktore gidrotermal'nogo okisleniya alyuminiya dlya energeticheskikh ustanovok). Teplofizika vysokikh temperature, 2010;48(6):908–915 (in Russ.).

20. Vlaskin M.S., Sorokovikov A.I., Lisitsyn A.V., Bersh A.V., Zhuk A.Z. Computational and experimental investigation on thermodynamics of the reactor of aluminum oxidation in saturated wet steam. International J. Hydrogen energy, 2010;35(5):1888–1894 (in Eng.).

21. Vlaskin M.S., Shkolnikov E.I., Bersh A.V., Zhuk A.Z., Lisicyn A.V., Sorokovikov A.I., Pankina Y.V. An experimental aluminum-fueled power plant. J. Power Sources, 2011;196(20):8828–8835 (in Eng.).

22. Shkolnikov E.I., Zhuk A.Z., Vlaskin M.S. Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable and Sustainable Energy Reviews, 2011;15(9):4611–4623 (in Eng.).

23. Mei-ShuaiZou, Yang R.-J., Guo X.-Ya., Huang H.-T., He J.-Yu, Zhang P. The preparation of Mg-based hydro-reactive material sand their reactive properties in sea-water. Int. J. Hydrogen Energy, 2011;36:6478–6483 (in Eng.).

24. Kravchenko O.V., Sevastyanova L.G., Genchel V.K., Bulychev B.M. Hydrogen generation from magnesium oxidationby water in presence of halides of transition and non-transition metals. Int. J. Hydrogen Energy, 2015;40:12072–12077 (in Eng.).

25. Buryakovskaya O.A., Dudoladov A.O., Vlaskin M.S., Zhuk A.Z., Shkolnikov E.I. Generation of hydrogen by aluminium oxidation in aqueous solutions at low temperatures. International Journal of Hydrogen Energy, 2016;41(4):2230–2237 (in Eng.).


Review

For citations:


Buryakovskaya O.A., Ryzhkova S.S., Vlaskin M.S. THE STUDY OF THE HYDROGEN PRODUCTION DURING THE MAGNESIUM OXIDATION IN AQUEOUS SALT SOLUTIONS AT TEMPERATURES RANGING FROM –40 ºC TO +20 ºC. Alternative Energy and Ecology (ISJAEE). 2017;(10-12):63-74. (In Russ.) https://doi.org/10.15518/isjaee.2017.10-12.063-074

Views: 730


ISSN 1608-8298 (Print)