

EXTINCTION IN THE SOOT PARTICLES ENSEMBLE
https://doi.org/10.15518/isjaee.2017.10-12.086-093
Abstract
The formation of soot particles during the combustion of hydrocarbon fuel relates to the incomplete combustion. The degree of chemical unburnt can reach 10–15%. The paper studies the soot extinction in hydrocarbon flames. Soot particles can reveal itself as a homogeneous structure or contain multiple functional groups bound to the carbon skeleton. The presence of molecules and their fragments or other chemical bonds in the substance was determined by Fourier Transform Infrared Spectrometer FTIR-1201. Spectrograms of analyzed samples were recorded in the range of 4000 cm-1 to 400 cm-1. Strong absorption in a wide spectral range of 4000 cm-1 to 500 cm-1 is typical to the soot samples of saturated hydrocarbons. Radiation absorption by radicals С = С, СН, СН2, СН3 in a spectral range of 3000 cm-1 to 1000 cm-1 and hydroxyl OH-group in a spectral range of 3600 cm-1 to 3200 cm-1 is typical to the soot samples of aromatics. The paper detects some nanostructures as С60 (ν = 1430 cm-1) and С70 (ν = 1460 cm-1). Carbon nano-tubes grown by catalytic methane as defect-free structure have high transparency. Strong absorption lines by С = С, СН, СН2, СН3 were observed in the range of 1800 cm-1 to 1000 cm-1. Soot particles are the main radiator in the IR-region which determines flame’s emission ability. During thermal exposure (afterburning), active centers were identified in the soot particles ensemble, along with their location and the nature of their structure. Soot particles with more developed surface have a shorter induction time of reacting with oxygen in the air and are more active. The induction time of active centers in highly disperse soot is much higher.
About the Authors
O. V. VasilevaRussian Federation
Ph.D. Student, Senior Lecturer at the Department of Applied Physics and Nanotechnology
S. I. Ksenofontov
Russian Federation
Ph.D. (physics and mathematics), Professor at the Department of General and Theoretical Physics
References
1. Korolchenko A.Ya. Combustion and explosion processes (Protsessy goreniya i vzryva). Moscow: Pozhnauka Publ., 2007, 266 p. (in Russ.).
2. Blazovskii V.S., Zakharov V.M., Poleshchuk I.Z. Dependence of soot formation on the characteristics of the fuel mixture and combustion conditions (Zavisimost' sazheobrazovaniya ot kharakteristik smesi topliva i uslovii goreniya. Energeticheskie mashiny i ustanovki, 1980;102(2):150–158 (in Russ.).
3. Bakirov F.G. Formation and burnout of soot during combustion of hydrocarbon fuels (Obrazovanie i vygoranie sazhi pri szhiganii uglevodorodnykh topliv). Moscow: Mashinostroenie Publ., 1989, 94 p. (in Russ.).
4. Tesner P.A. The embryos of soot particles are radicals (Zarodyshi sazhevykh chastits – radikaly). Fizika goreniya i vzryva, 1992;28(3):49–52 (in Russ.).
5. Krestinin A.V. On the Mechanism of Soot Formation from Acetylene. Chem. Phys. Reports, 1994;13(1):191–210 (in Eng.).
6. Krestinin A.V. Detailed modelling of. soot. formation in hydrocarbon. Pyrolysis. Combustion Flame, 2000;121:513–524 (in Eng.).
7. Stanmore B.R., Brilhac J.F., Gilot P. The Oxidation of Soot: A Review of Experiments, Mechanisms and Models. Carbon, 2001;39:2247–2268 (in Eng.).
8. Gritsenko A.I., Aleksandrov I.A., Galanin I.A.Physical methods of processing and use of gas (Fizicheskie metody pererabotki i ispol'zovanie gaza). Moscow: Nedra Publ., 1981, 224 p. (in Russ.).
9. Mansurov Z.A. Soot formation in combustion processes (Sazheobrazovanie v protsessakh goreniya). Fizika goreniya i vzryva, 2005;41(6):137–156 (in Russ.).
10. Baum T., Loffler P., Weilmunster P., Homman K.-H. Fullerene ions and their relation to PAH and soot in low-pressure hydrocarbon flames. Ber. Bunsenges Phys. Chem., 1992;96:841–857 (in Eng.).
11. Chowdhury K.D., Howard J.B., Vander Sande J.B. Fullerenic nanostructures in flame. J. Mater. Res., 1996:11;341–347 (in Eng.).
12. GriecoW.J., Howard J.B., Rainey L.C. Fullerenic carbon in combustion-generated soot. Carbon, 2000;38:597–614 (in Eng.).
13. Gusev A.L. Development and Making of a Hybrid Nitrogen-Hydrogen Vehicle [E-resource]. Available at: https://www.researchgate.net/publication/315573030_A L_Gusev (22.09.2016) (in Eng.).
14. Sergienko I.A., Florko A.V., Shevchuk V.G. Peculiarities of Emission and Absorption Characteristics of Soot Particles at the Combustion Temperature (Osobennosti ispuskatel'nykh i pogloshchatel'nykh kharakteristik chastits sazhi pri temperature goreniya). Fizika goreniya i vzryva, 2000;36(2):33–39 (in Russ.).
15. Levashenko G.I., Simonkov V.V. Determination of the optical constant of soot in combustion products of hydrocarbon fuel at λ = 10.6 μm (Opredelenie opticheskikh postoyannykh sazhi v produktakh sgoraniya uglevodorodnogo topliva pri λ = 10,6 mkm). Fizika goreniya i vzryva, 1995;31(1):70–73 (in Russ.).
16. Vasileva O.V., Ksenofontov S.I., Kokshina A.V., Krasnova A.G. Structure and properties of soot in hydrocarbon flames (Struktura i svoistva sazhi v plameni uglevodorodnogo topliva). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(19):105–111 (in Russ.).
17. Ksenofontov S.I., Vasileva O.V. The formation of the active centers in the soot (Obrazovanie aktivnykh tsentrov v sazhe). Actualscience, 2015;1(4):58–61 (in Russ.).
18. Vladimirov G.G. Physics of the surface of solids (Fizika poverkhnosti tverdykh tel). SPb.: Lan' Publ., 2016, 352 p. (in Russ.).
19. Application. Brief tables of characteristic frequencies [E-resource]. Available at: http://www.physchem.chimfak.rsu.ru/Source/special/ir_s pectr_3.html (10.06.2016) (in Russ.).
20. Boren K., Khafmen D. Absorption and scattering of light by small particles (Pogloshchenie i rasseyanie sveta malymi chastitsami). Moscow: Mir Publ., 1986, 664 p. (in Russ.).
21. Odnostennye uglerodnye nanotrubki [E-resource]. Available at: http://ocsial.com/ru/ (14.04.2016) (in Russ.).
22. Jager C., Huisken F., Mutschke H., Henning Th., Poppitz W., Voicu I. Identification and spectral properties of PAHs in carbonaceous material produced by laser pyrolysis. Carbon, 2007;45:2981–2994 (in Eng.).
23. Russo S., Stanzione F., Tregrossi A., Ciajolo A. Infrared spectroscopy of some carbon-based materials relevant in combustion: Qualitative and quantitative analysis of hydrogen. Carbon, 2014;74:127–138 (in Eng.).
24. Mansurov Z.A. Obtaining nanomaterials in combustion processes (Poluchenie nanomaterialov v protsessakh goreniya). Fizika goreniya i vzryva, 2012;48(5):77–86 (in Russ.).
Review
For citations:
Vasileva O.V., Ksenofontov S.I. EXTINCTION IN THE SOOT PARTICLES ENSEMBLE. Alternative Energy and Ecology (ISJAEE). 2017;(10-12):86-93. (In Russ.) https://doi.org/10.15518/isjaee.2017.10-12.086-093