Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ALKALI AND POTASSIUM ALMATES ARE PERSPECTIVE HYDROGEN SUBSTITUTES

https://doi.org/10.15518/isjaee.2017.13-15.037-060

Abstract

The statistical theory of phase transformations of the potassium alanate KAlH4 temperature decomposition leading to the formation of a more complex alanate K3AlH6 and potassium hydride KH and to further dehydrogenation of the latter with free hydrogen release, pure potassium and aluminum was developed on the basis of molecular-kinetic concepts. The free energies values of the decay phases are calculated, dependence of the decay phases and temperature, pressure, composition on metals, hydrogen concentration, activity of its atoms and energy parameters are found. Bialkaline alanates K2MAlH6 (M = Na, Li) and Na2LiAlH6 were also studied. A number of literary experimental graphs of the thermal decomposition processes for the alanates are given, from which the averaged values of the temperatures for the phase transformations are estimated. Plots of the free energies values of the phases at the different temperatures are plotted vs the concentration of hydrogen, the minima of which determine the equilibrium states. The possibility of two such minima appearance corresponding to the stable and metastable states of the phase is established. The temperature dependence of the equilibrium concentration for hydrogen was found, its specificity in the region of hydrogen concentration c = 0.5 was revealed. The graphs of the temperature dependence of free hydrogen releasing from each phase are obtained and such a graph for all chemical reactions of the alanate decomposition that occur also. On the latter one, fractures were found at the points of phase transitions, which can be experimentally manifested in the form of bends. Isotherms of hydrogen absorption-desorption processes and hydrogen content isoplets in phases are also constructed. The possibility of hysteresis effect is established. The results of calculations are compared with the experimental data, their qualitative correspondence is obtained.

About the Authors

Z. A. Matysina
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine

D.Sc. (physics and mathematics), Professor, Senior Researcher at Laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, 3 Krzyzanowski str., Kiev-142, 03680;

Professor at Oles Honchar Dnepropetrovsk National University; Honored Professor of Dnepropetrovsk National University,

shurzag@ipms.kiev.ua



S. Y. Zaginaychenko
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine

D.Sc. (physics and mathematics), Professor, Senior Researcher at Laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine,

Kiev



D. V. Schur
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine

Ph.D. (chemistry), Professor, Chief of Laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine,

Kiev



An. D. Zolotarenko
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine
Ph.D. (chemistry), Senior Researcher at Institute for Problems of Materials Science of National Academy of Sciences (IMPS NASU)


Al. D. Zolotarenko
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine
Ph.D. (chemistry), Senior Researcher at Institute for Problems of Materials Science of National Academy of Sciences (IMPS NASU)


M. T. Gabdullin
National Nanotechnology Laboratory, al-Farabi Kazakh National University
Kazakhstan

Ph.D. (physics and mathematics), Director of National Nanotechnological Laboratory of open type at Al-Farabi Kazakh National University,

71 al-Farabi str., Almaty, 050040



References

1. Herold A. Tansion de dissociation de I’hydrure de potassium. C. r. Acad. Sci., 1947;224(26):1826–1827 (in Eng.).

2. Herold A. Mesure de la tension de dissociation de I’hydrure de potassium par une methode dynamicue. C. r. Acad. Sci., 1947;255(3):249–250 (Issl.) (in Eng.).

3. Messer C.E., Fasolino L.G., Thalmayer C.E. The heats of formation of lithium, sodium and potassium hy-drides. J. Am. Chem. Soc., 1955;77(17):4524–4526 (in Eng.).

4. Gunn S.R., Green LeRoy G. The heats of formation at 25° of the crystalline hydrides and deuterides and aqueous hydroxides of lithium, sodium and potassium. J. Am. Chem. Soc., 1958;80(18):4782–4786 (in Eng.).

5. Clasen H. Alanat-synthese aus den elementen und ihre bedeutung. Angew. Chem., 1961;73(10):46–55 (in Eng.).

6. Zakharkin L.I., Gavrilenko V.V. A simple method of obtaining sodium and potassium aluminum hydrides (Prostoi sposob polucheniya alyumogidridov natriya i kaliya). Izv. Academy of Sciences of the USSR, 1961;(2):2246–2248 (in Russ.).

7. Zakharkin L.I., Gavrilenko V.V. Mutual transitions in a series of lithium, sodium and potassium aluminum hydrides (Vzaimnye perekhody v ryadu alyumogidridov litiya, natriya i kaliya). Izv. Academy of Sciences of the USSR, 1962;(7):1146–1149 (in Russ.).

8. Gurvich L.V., Khachkuruzov G.A., Medvedev V.A., Veits I.V., Bergman G.A., Yungman V.S., Rtishcheva N.P., Kuratova L.F., Yurkov N.G., Kans A.A., Yudin B.F., Brounshtein B.I., Baibuz V.F., Klividze V.A., Prozorovskii E.A., Vorob'ev V.A. Thermodynamic properties of individual substances (Termodinamicheskie svoistva individual'-nykh veshchestv). Moscow: Bash. NII Publ., 1962 (in Russ.).

9. Dymova T.N., Selivokhina M.S., Eliseeva N.G. On the thermal stability of potassium aluminum hydride (O termicheskoi ustoichivosti alyumogidrida kaliya). Dokl. AN USSR, 1963;153(6):1330–1332 (in Russ.).

10. Bakulina V.M., Bakum S.I., Dymova T.N. Xray diffraction study of hydrido-aluminates of potassium and sodium (Rentgenograficheskoe issledovanie gidridoalyu¬minatov kaliya i natriya). Zhurn. neorg. khim., 1968;XIII(5):1288–1289 (in Russ.).

11. Chini P., Baradel F., Vacca C. La reazione dell’alluminium con idrogeno e fluorure potassico. Chim. Indust., 1968;48(6):596–600 (in Eng.).

12. Dymova T.N., Bakum S.I. On Thermal Decomposition of Hydridoaluminates of Potassium and Sodium (O termicheskom razlozhenii gidridoalyuminatov kaliya i natriya). Zhurn. neorg. khim., 1969;XIV(12):3190–3195 (in Russ.).

13. Ripan R., Chetyanu I. Inorganic chemistry. Chemistry of metals (Neorganicheskaya khimiya. Khimiya metallov). Moscow: Mir Publ., 1971, vol. 1 (in Russ.).

14. Dymova T.N., Eliseeva N.G., Bakum S.I., Dergachev Yu.M. Direct synthesis of alkali metal aluminum hydrides in melts (Pryamoi sintez alyumogidridov shchelochnykh metallov v rasplavakh). Dokl. AN USSR, 1974;215(6):1369–1372 (in Russ.).

15. Dymova T.N., Bakum S.I., Mirsaidov U. Phase states of alkali metal aluminum hydrides (Fazovye sostoyaniya alyumogidridov shchelochnykh metallov). Dokl. AN USSR, 1974;216(1):87–90 (in Russ.).

16. Badalov A. Investigations of the thermal stability of potassium tetrahydroaluminate (Issledovaniya termicheskoi ustoichivosti tetragiroalyuminata kaliya). Theses of Doklady. Republic. Conf. Young scientists. Sec. Chemistry. Dushanbe: Doshil Publ., 1977, pp. 16–17 (in Russ.).

17. Kurbanov A., Badalov A., Glybin V.P. Calorimetric study of potassium aluminum hydrides (Kalorimetricheskoe issledovanie alyumogidridov kaliya). The Eighth All-Union Conf. By calorimetry and chemical thermodynamics. Theses Dokl., Ivanovo, 1979, pp. 49 (in Russ.).

18. Kurbanov A., Badalov A., Mirsaidov U. Thermal stability of potassium aluminum hydrides (Termicheskaya ustoichivost' alyumogidridov kaliya). DAN Tadzh. SSB, 1980;23(2):83 (in Russ.).

19. Badalov A., Glybin V.P., Kurbanov A.R. On some thermochemical properties of potassium aluminum hydrides (O nekotorykh teplokhimicheskikh svoistvakh alyumogidridov kaliya). DAN Tadzh. SSB, 1981;(24):360 (in Russ.).

20. Badalov A. Thermodynamics of complex aluminohydrides of some alkaline and alkaline-earth metals (Termodinamika kompleksnykh alyumogidridov nekotorykh shchelochnykh i shchelochno-zemel'nykh metallov). Dokt. diss., Tadzh. Politekhn. inst., Belorussk. Tekhnologich. inst., Minsk, 1983 (in Russ.).

21. Bureau J.C., Bastide J.P., Claudy P., Letoffe J.M., Amri Z. Evolution of metal-hydrogen bonds in hydridoaluminates. J. Less-Common Metals, 1987;130:371–373 (in Eng.).

22. Bastide J.P., Claudy P., Letoffe J.M., Xajri J. Poluchenie i kharakteristika alyumogirida kaliya KAlH4. Zhurn. neorg. khim., 1987;2:248–263 (in Russ.).

23. Bastide J.P., Claudy P., Letoffe J.M., Hajri E.L. Preparation et caracterisation du tetrahydruroaluminate de potassium KA1H4. Revue de Chimie Minerale, 1987;24:248 (in Eng.).

24. Bastide J.P., Claudy P., Letoffe J.M., Elioudrs P.H. Synthese catalytique de I’hydrure de potassium. J. Less-Common. Metals., 1987;128:L7–L8 (in Eng.).

25. Gamburg D.Yu., Semenov V.P., Dubovkin L.N., Smirnova L.N. Hydrogen. Properties, reception, storage, transportation, application (Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie). Moscow: Khimiya, 1989 (in Russ.).

26. Knunyants I.L. Chemical Encyclopedia (Khimicheskaya entsiklopediya). Moscow: Sovetskaya entsiklopediya, 1990, vol. 2 (in Russ.).

27. Tarasov B.P., Bakum S.I., Novikov A.V. NMR 39K and 27Al in hydride and potassium tetrahydroaluminate (YaMR 39K i 27Al v gidride i tetragidroalyuminate kaliya). Zhurn. neorg. khim., 2000;45(12):2042–2048 (in Russ.).

28. Bogdanovic B., Brand R.A., Marjanovic A., Schwickardi M., Tölle J. Metal-doped sodium aluminium hy-drides as potential new hydrogen storage materials. J. Alloys Compd., 2000;302:36–58 (in Eng.).

29. Lidin R.A. i dr. Chemical properties of inorganic substances (Khimicheskie svoistva neorganicheskikh veshchestv). Moscow: Khimiya Publ., 2000 (in Russ.).

30. Tarasov B.P., Bakum S.I., Novikov A.V. Thermal decomposition of potassium tetrahydroaluminate according to NMR data 27Al, 39K (Termicheskoe razlozhenie tetragidroalyuminata kaliya po dannym YaMR 27Al, 39K). Zhurn. neorg. khim., 2001;46(3):474–480 (in Russ.).

31. Morioka H., Kakizaki K., Chung S.-C., Yamada A. Reversible hydrogen decomposition of KAlH4. J. Alloys and Compd., 2003;353(1–2):310–314 (in Eng.).

32. Chung S.-C., Morioka H., Thermochemistry and crystal structures of lithium, sodium and potassium alanates as determined by ab initio simulations. J. Alloys and Compd., 2004;372(1–2):92–96 (in Eng.).

33. Arroyo Dompablo M.E., Ceder G. First principles investigations of complex hydrides AMH4 and A3MH6 (A = Li, Na, K, M = B, Al, Ga) as hydrogen storage system. J. Alloys and Compd., 2004, Vol. 364, P. 6–12 (in Eng.).

34. Vajeeston P., Ravindran P., Kjekshus A., Fjellvåg H. Crystal structure of KAlH4 from first principle calcula-tions // J. Alloys and Compd., 2004, Vol. 363, № 1–2, P. L7–L11 (in Eng.).

35. Vajeeston P., Ravindran P., Kjekshus A., Fjellvåg H. Theoretical modeling of hydrogen storage materials: Prediction of structure, chemical bond character, and high-pressure behavior // J. Alloys and Compd., 2005;404–405:377–383 (in Eng.).

36. Løvvik O.M., Swang O., Opalka S.M. Modeling alkali alanates for hydrogen storage by densityfunctional band-structure calculations. J. Mater. Res., 2005;20(20):3199–3213 (in Eng.).

37. Hauback B.C., Brinks H.W., Heyn R.H., Blom R., Fjellvåg H. The crystal structure of KAlD4. J. Alloys and Compd., 2005;364:35–38 (in Eng.).

38. Mamatha M., Weidenthaler C., Pommerin A., Felderhoff M., Schüth F. Comparative studies of the decom-position of alanates followed by in situ XRD and DSC methods. J. Alloys and Compd., 2006;416(1–2):303–314 (in Eng.).

39. Orimo S.-i., Nakamori Y., Eliseo J.R., Züttel A., Jensen C.M. Complex hydrides for hydrogen storage. Chem. Rev., 2007;107:4111–4132 (in Eng.).

40. Jensen C., Wang Y., Chou M.Y. Alanates as hydrogen storage materials, pp. 381–419. In: Walker G. (Ed.) Solid-State Hydrogen Storage: Materials and Chemistry. Cambridge: Wood head Publishing, 2008, 600 p (in Eng.).

41. Graetz J., Lee Y., Reilly J., Park S., Vogt T. Structures and thermodynamics of the mixed alkali alanates. Phys. Rev. B, 2008;71(18):184115–1–7 (in Eng.).

42. Pitt M.P., Vullum P.E., Sørby M.H., Sulic M.P., Jensen C.M., Walmsley J.C. et.al. Structural properties of the nanoscopic Al85Ti15 solid solution abserved in the hydrogen – cycled NaAlH4 + 0,1TiCl3 system. Acta Materialia, 2008;56:4691–4701 (in Eng.).

43. Graetz J., Lee Y., Reilly J., Park S., Vogt T. Structural and thermodynamics of the mixed alkali alanates. Arxiv: cond-mat/0501536v2, 2008, pp. 1–7 (in Eng.).

44. Vajeeston P., Ravindran P., Fjellvåg H. Predicting new materials for hydrogen storage application. Materi-als, 2009;2:2296–2318 (in Eng.).

45. Ares J.R., Aguey-Zinsou K.-F., Leardini F., Ferrer I.J., Fernandez J.-F., Guo Z.-X., Sanchez C. Hydrogen absorption/desorption mechanism in potassium alanate (KAlH4) and enhancement by TiCl3 doping. J. Phys. Chem. C, 2009;113:6845–6851 (in Eng.).

46. Jain I.P., Jain P., Jain A. Novel hydrogen storage materials: A review of lightweight complex hydrides. J. Alloys and Compd., 2010;503(2):303–339 (in Eng.).

47. Rongeet C., Scheerbaum N., Schultz L., Gutfleisch O. Catalysis of H2 sorption in NaAlH4: general description and new insights. Acta Materialia, 2011;59:1725–1733 (in Eng.).

48. Arnbjerg L.M., Jensen T.R. New compounds in the potassium-aluminium-hydrogen system observed during release and uptake of hydrogen. Int. J. Hydrogen Energy, 2012;37(1):345–356 (in Eng.).

49. Hauback B.C., Brinks H.W., Blanchard D., Fossdal A. Structural studies of materials for hydrogen storage – desorption experiments – 01-02631. Summit of Materials Science and Materials Science Week, MSW 2012, Sendai, Japan, November 2012, invited talk (in Eng.).

50. Heyn R.H., Saldan I., Sørby M.H., Frommen C., Arstad B., Bougza A.M., Fjellvåg H., Hauback B.C. Struc-tural and spectroscopic characterization of potassium fluoroborohydrides. Phys. Chem. Chem. Phys., 2013;15(27):11226–11230 (in Eng.).

51. Sorte E.G., Emery S.B., Majzoub E.H., EllisCaleo T., Ma Z.L., Hammann B.A., Hayes S.E., Bowman R.C., Conradi M.S. NMR Study of Anion Dynamics in Solid KAlH4. J. Phys. Chem. C,;118(11):5725–5732 (in Eng.).

52. Smirnov A.A. Theory of phase transformations and the arrangement of atoms in interstitial alloys (Teoriya fazovykh prevrashchenii i razmeshcheniya atomov v splavakh vnedreniya). Kiev: Naukova dumka Publ., 1992 (in Russ.).

53. Matysina Z.A., Zaginaichenko S.Yu., Shchur D.V. Solubility of an impurity in metals, alloys, intermetallides, fullerites (Rastvorimost' primesi v metallakh, splavakh, interme-tallidakh, fulleritakh). Dnepropetrovsk: Nauka i obrazovanie Publ., 2006 (in Russ.).


Review

For citations:


Matysina Z.A., Zaginaychenko S.Y., Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Gabdullin M.T. ALKALI AND POTASSIUM ALMATES ARE PERSPECTIVE HYDROGEN SUBSTITUTES. Alternative Energy and Ecology (ISJAEE). 2017;(13-15):37-60. (In Russ.) https://doi.org/10.15518/isjaee.2017.13-15.037-060

Views: 696


ISSN 1608-8298 (Print)