

CONCENTRATION DEPENDENCE OF ATOMIC MEAN SQUARE DISPLACEMENT IN TITANIUM CARBONITRIDE TiCxNy
https://doi.org/10.15518/isjaee.2017.13-15.068-076
Abstract
The work is dedicated to study of crystal lattice dynamics by means of the neutron diffraction method. The neutron diffraction method studies the dependence of the averaged root-mean-square displacement of atoms in titanium carbonitrides TiCxNy at various concentrations of nonmetals – carbon and nitrogen. Anomalous dependence of the averaged root-mean-square displacement of atoms in titanium carbonitrides TiCxNy on the relative total concentration of nonmetals (C + N) / Ti is established. With decrease of the general contents of nonmetals, that is, with the deviation of the alloy composition from stoichiometry, values of the thermal factor on the neutron diffraction pattern and the averaged root-mean-square atomic displacement at first decreases to the general concentration of nonmetals (C + N) / Ti ≈ 0.80. It increases with further deviation of the composition from stoichiometry. The nonmonotonic change of the root-mean-square atomic displacement with deviation from stoichiometry allows assuming that the dynamic distortion (thermal vibrations amplitude of atoms) in the lattice predominates over the static distortion, since otherwise the overall SCS should be only increase. This, apparently, testifies to difficult concentration dependence of the interatomic interaction in titanium carbonitrides, which has a heterodesmic character characterized by the presence ionic, covalent and metallic chemical bonds.
In addition, the work determines the averaged root-mean-square displacements and the individual root-meansquare displacement of atoms and the Debye temperature in stoichiometric titanium carbonitrides TiCxNy at different nonmetallic concentrations (C and N). They are practically equal at different ratios of the carbon and nitrogen atoms concentrations. The results can be useful for materials scientists and designers engaged in instrumentation and production free tungsten structural refractory materials to predict dynamic characteristics of titanium carbonitrides and manage these characteristics.
About the Authors
I. KhidirovUzbekistan
D.Sc. (physics and mathematics), Professor, Head of the Laboratory of Structural Transformations in Solids States,
Ulugbek, Tashkent, 100214
S. J. Rakhmanov
Uzbekistan
Junior Researcher,
Ulugbek, Tashkent, 100214
References
1. Bodrova L.G., Kramar G.M., Kislyi P.S. et al. Features of sintering of Ti, V, and Nb-based carbide alloys (Osobennosti spekaniya splavov na osnove karbidov Ti, V i Nb). Sverkhtverdye splavy, 2001;(4):45–49 (in Russ.).
2. Andrievskii R.A. Synthesis and properties of films of interstitial phases (Sintez i svoistva plenok faz vnedreniya). Uspekhii khimii, 1997;66(1):57–77 (in Russ.).
3. Dazhi Wang et al. Phases and structures of monocrystalline Ti-N films. J. Appl. Physics, 1995;77(7):2945–2951 (in Eng.).
4. Compounds of variable composition and their solid solutions (Soedineniya peremennogo sostava i ikh tverdye rastvory) / Ed. G.V. Bazuev. Ekaterinburg: UNTs AN USSR Publ., 1984, 294 p. (in Russ.).
5. Velasso F. et al. TiCN-high speed steel composites: sinter ability and properties. Applied Science and Manufacturing, 2002:33(6):819–827 (in Eng.).
6. Alyamovskii S.I. Thermal expansion coefficients of titanium carbonitrides (Koeffitsienty termicheskogo rasshireniya karbonitridov titana). Teplofizika vysokikh temperature, 1973;(3):680–682 (in Russ.).
7. Iverenova V.I., Revkevich G.P. Theory of X-ray scattering (Teoriya rasseyaniya rentgenovskikh luchei). Moscow: MSU Publ., 1978, 279 p. (in Russ.).
8. Tsipenyuk Yu.M. Zero energy and zero-point vibrations: how they are detected experimentally (Nulevaya energiya i nulevye kolebaniya: kak oni obnaruzhivaetsya eksperimental'no). Uspekhi fizicheskikh nauk, 2012;182(8):855–867 (in Russ.).
9. Khidirov I. Neutron diffraction study of the systems Ti-C, Ti-N, Ti-C-H, and Ti-N-H (Neitronograficheskoe issledovanie sistem Ti-C, Ti-N, Ti-C-H i Ti-N-H). Saarbrucken (Deutschland): LAP LAMBERT Academic publishing, 2014, 286 p. (in Russ.).
10. Krivoglaz M.A. Theory of scattering of X-rays and thermal neutrons by real crystals (Teoriya rasseyaniya rentgenovskikh luchei i teplovykh neitronov real'nymi kristallami). Moscow: Nauka Publ., 1967, 336 p. (in Russ.).
11. Shoyusupov Sh. et al. Neutron diffractometer, coupled with an IBM-PC computer (Neitronnyi difraktometr, sopryazhennyi s komp'yuterom IBM-PS). Zhurnal problemy energetiki i informatiki, 2002(2):11–16 (in Russ.).
12. Marmer E.N. High-temperature vacuum technologies and electric furnaces for heat treatment and sintering (Vysokotemperaturnye vakuumnye tekhnologii i elektropechi dlya termoobrabotki i spekaniya). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2009;(3):28–26 (in Russ.).
13. Rodriguez-Carvajal J. Recent Developments of the Program FULLPROF in Commission on Powder Diffrac-tion (IUCr). Newsletter, 2001;26:12–19 (in Eng.).
14. International Tables for Crystallography. V.A: Space-Group Symmetry. Ed. Theo Hahn. Dordrecht (The Netherlands): Springer, 2005, 911 p (in Eng.).
15. Karimov I., Em V.T., Petrunin V.F. et al. Neutron diffraction study of titanium carbonitride (Neitronograficheskoe issledovanie karbonitrida titana). Izv. AN SSSR. Neorg. Materialy, 1976;12(8):1492–1494 (in Russ.).
16. Nozik Yu., Ozerov K.P., Khennig K. Structural neutron diffraction (Strukturnaya neitronografiya). Moscow: Atomizdat Publ., 1979, vol. 1, 344 p. (in Russ.).
17. Tot L. Carbides and nitrides of transition metals (Karbidy i nitridy i nitridy perekhodnykh metallov). Moscow: Mir Publ., 1974, 296 p. (in Russ.).
18. Khidirov I., Karimov I., Em V.V. Neutrondiffraction determination of the mean-square displacements of atoms and the Debye temperature in nitrides of transition metals of group IV (Neitronograficheskoe opredelenie srednekvadratichnykh smeshchenii atomov i temperatury Debaya v nitridakh perekhodnykh metallov IV gruppy). Izv. AN UzSSR. Ser. fiz.-mat. Nauk, 1978;(6):70–73 (in Russ.).
19. Khidirov I., Parpiev A.S. Separate Determination of the Amplitude of Thermal Vibrations and Static Atomic Displacements in Titanium Carbide by Neutron Diffraction (Razdel'noe opredelenie dinamicheskikh i staticheskikh srednekvadratichnykh smeshchenii atomov karbida titana TiC metodom difraktsii neitronov). Kristallografiya, 2011;56(3):504–508 (in Russ.).
20. Gusev A.I., Rempel A.A. Structural phase transitions in nonstoichiometric compounds (Strukturnye fazovye perekhody v nestekhiometricheskikh soedineniyakh). Moscow: Nauka Publ., 1988, 312 p. (in Russ.).
Review
For citations:
Khidirov I., Rakhmanov S.J. CONCENTRATION DEPENDENCE OF ATOMIC MEAN SQUARE DISPLACEMENT IN TITANIUM CARBONITRIDE TiCxNy. Alternative Energy and Ecology (ISJAEE). 2017;(13-15):68-76. (In Russ.) https://doi.org/10.15518/isjaee.2017.13-15.068-076