COMPUTER SIMULATION OF ACTIVE LAYER FUEL CELL WITH POLYMER ELECTROLYTE: HOW DEGREE FILLING OF SUPPORT GRAIN BY WATER INFLUENCES ON OVERALL CURRENT
https://doi.org/10.15518/isjaee.2015.04.003
Abstract
About the Authors
Yu. G. ChirkovRussian Federation
Dr. of Sciences (Chemistry), Leading Researcher, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
V. I. Rostokin
Russian Federation
Associate Professor of the department "General physics", National Research Nuclear University (MEPhI), PhD (Physic-Mathematical Sciences)
References
1. Rubio M.A., Urquia A., Dormido S. Diagnosis of PEM fuel cells through current interruption. Journal of Power Sources, 2007, vol. 171, pp. 670–677.
2. Li H., Tang Y., Wang Z., Shi Z., Wu S., Song D., Zhang J., Fatih K., Zhang J., Wang X., Liu Z., Abouatal-lah R., Mazza A. A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 2008, vol. 178, pp. 103.
3. Yousfi-Steiner N., Mocoteguy Ph., Candusso D., Hissel D., Hernandez A., Aslanides A. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. Journal of Power Sources, 2008, vol. 183, pp. 260.
4. Weber A.Z., Hickner M.A. Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode as-sembly. Electrochimica Acta, 2008, vol. 53, pp. 7668–7674.
5. Tushar Swamy, E. C. Kumbur, and M. M. Mench. Characterization of Interfacial Structure in PEFCs: Water Storage and Contact Resistance Model. Journal of The Electrochemical Society, 2010, vol. 157(1), pp. B77–B85.
6. Xuhai Wang and Trung Van Nguyen. Modeling the Effects of the Microporous Layer on the Net Water Transport Rate Across the Membrane in a PEM Fuel Cell. Journal of the Electrochemical Society, 2010, vol. 157(4), pp. B496–B505.
7. Rubio M.A., Urquia A., Dormido S. Diagnosis of performance degradation phenomena in PEM fuel cells // International Journal of Hydrogen Energy, 2010, vol. 35, pp. 2586–2590.
8. Jiao K., Li X. Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Com-bustion Science, 2011, vol. 37, pp. 221.
9. Li Chen, Hui-Bao Luan, Ya-Ling He, Wen-Quan Tao. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with inter-digitated flowfields. International Journal of Thermal Sciences, 2012, vol. 51, pp. 132–144.
10. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications / Ed. Zhang J. Springer Verlag London Limited, 2008, 1137 p.
11. Xie J., Wood I. D.L., Wayne D.M., Zawodzinski T.A., Atanassov P., Borup R.L. J. Electrochem. Soc., 2005, vol. 152, p. A104.
12. Mukherjee P.P., Wang C.Y. J. Electrochem. Soc., 2006, vol. 153, p. A840.
13. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. J. Power Sources, 2008, vol. 175, p. 699.
14. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. J. Power Sources, 2008, vol. 175, p. 712.
15. Chirkov Yu.G., Rostokin V.I. Aktivnyj sloj katoda toplivnogo èlementa s polimernym èlektrolitom: priroda kanalov podači protonov i kisloroda. Èlektrohimiâ, 2012, vol. 48, p.1192 [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem, 2012, vol. 48, p. 1086] [in Russ.].
16. Chirkov Yu.G., Rostokin V.I. Katod toplivnogo èlementa s tverdym polimernym èlektrolitom: konstruiro-vanie optimalʹnoj struktury aktivnogo sloâ. Èlektrohimiâ, 2014, vol. 50 (9), p. 968 [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem, 2014, vol. 50 (9), p. 872] [in Russ.].
17. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlemen-ta s polimernym èlektrolitom: učet processa diffuzii kis-loroda v zernah podložki. International Scientific Jour-nal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2014, no. 6, pp. 8–15 [in Russ.].
18. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlemen-ta s polimernym èlektrolitom: o faktorah, tormozâŝih polnocennoe protekanie processa generacii toka. International Scientific Journal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2014, no. 9, pp. 8–21 [in Russ.].
19. Chirkov Yu.G. Poristye èlektrody v èlektro-himičeskih tehnologiâh: kompʹûternoe modelirovanie. International Scientific Journal «Alʹternativnaâ èner-getika i èkologiâ» (ISJAEE), 2014, 9, pp. 55–59 [in Russ.].
20. Chirkov Yu.G., Rostokin V.I. Process zatopleniâ vodoj aktivnogo sloâ katoda toplivnogo èlementa s tverdym polimernym èlektrolitom. International Scien-tific Journal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2014, no. 14, pp. 58–68 [in Russ.].
21. Chirkov Yu.G., Rostokin V.I. O stepeni zapolneniâ zeren podložki vodoj: aktivnyj sloj katoda toplivnogo èlementa s nafionom. kompʹûternoe modelirovanie. International Scientific Journal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2014, no. 17, pp. 57–65 [in Russ.].
22. Parthasarathy A., Srinivasan S., Appleby A.J., Martin C.R . Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion - a microelectrode investigation. J. Electrochem. Soc., 1992, vol. 139, p. 2530.
23. Chirkov Yu.G., Rostokin V.I. Teoriâ poristyh èlektrodov: rasčet gabaritnyh harakteristik katoda dlâ slučaâ, kogda polârizacionnaâ krivaâ imeet učastki s različnymi naklonami. Èlektrohimiâ, 2006, vol. 42(7), p. 806 [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem., 2006, vol. 42 (9), p. 722] [in Russ.].
Review
For citations:
Chirkov Yu.G., Rostokin V.I. COMPUTER SIMULATION OF ACTIVE LAYER FUEL CELL WITH POLYMER ELECTROLYTE: HOW DEGREE FILLING OF SUPPORT GRAIN BY WATER INFLUENCES ON OVERALL CURRENT. Alternative Energy and Ecology (ISJAEE). 2015;(4):46-57. (In Russ.) https://doi.org/10.15518/isjaee.2015.04.003