Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

COMPUTER SIMULATION OF ACTIVE LAYER FUEL CELL WITH POLYMER ELECTROLYTE: HOW DEGREE FILLING OF SUPPORT GRAIN BY WATER INFLUENCES ON OVERALL CURRENT

https://doi.org/10.15518/isjaee.2015.04.003

Abstract

In the cathode active layer of a fuel cell with a solid polymer electrolyte, process of current generation takes place in support grains. The speed of this process essentially depends on a degree of support grains pores filling with water. Calculations show that the overall current value in the cathode active layer with the pores of support grains completely filled with water are much less than with pores partially filled or even without water. The last variant is realized when the rate of moisture evaporation from the pores of the support grains exceeds the rate of flooding them in the current generation process. In order to increase the overall current, a degree of heating-up of the cathode active layer is necessary to increase.  It is desirable that the temperature of the active layer Ts as much as possible exceed the temperature T, which the fuel cell operates. In this study by method of computer simulation, a specific example of determining the overall current value in the cathode active layer is presented. It is shown that if the pores of support grains are completely filled with water, then overall current I = 0.223 A/cm2, and if the pores of the support grains are filled with water only about 10 percent then I = 1.151 A/cm2.

 

About the Authors

Yu. G. Chirkov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
Russian Federation
Dr. of Sciences (Chemistry), Leading Researcher, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS


V. I. Rostokin
National Research Nuclear University (MEPhY)
Russian Federation
Associate Professor of the department "General physics",  National  Research Nuclear University (MEPhI), PhD (Physic-Mathematical  Sciences)


References

1. Rubio M.A., Urquia A., Dormido S. Diagnosis of PEM fuel cells through current interruption. Journal of Power Sources, 2007, vol. 171, pp. 670–677.

2. Li H., Tang Y., Wang Z., Shi Z., Wu S., Song D., Zhang J., Fatih K., Zhang J., Wang X., Liu Z., Abouatal-lah R., Mazza A. A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 2008, vol. 178, pp. 103.

3. Yousfi-Steiner N., Mocoteguy Ph., Candusso D., Hissel D., Hernandez A., Aslanides A. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. Journal of Power Sources, 2008, vol. 183, pp. 260.

4. Weber A.Z., Hickner M.A. Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode as-sembly. Electrochimica Acta, 2008, vol. 53, pp. 7668–7674.

5. Tushar Swamy, E. C. Kumbur, and M. M. Mench. Characterization of Interfacial Structure in PEFCs: Water Storage and Contact Resistance Model. Journal of The Electrochemical Society, 2010, vol. 157(1), pp. B77–B85.

6. Xuhai Wang and Trung Van Nguyen. Modeling the Effects of the Microporous Layer on the Net Water Transport Rate Across the Membrane in a PEM Fuel Cell. Journal of the Electrochemical Society, 2010, vol. 157(4), pp. B496–B505.

7. Rubio M.A., Urquia A., Dormido S. Diagnosis of performance degradation phenomena in PEM fuel cells // International Journal of Hydrogen Energy, 2010, vol. 35, pp. 2586–2590.

8. Jiao K., Li X. Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Com-bustion Science, 2011, vol. 37, pp. 221.

9. Li Chen, Hui-Bao Luan, Ya-Ling He, Wen-Quan Tao. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with inter-digitated flowfields. International Journal of Thermal Sciences, 2012, vol. 51, pp. 132–144.

10. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications / Ed. Zhang J. Springer Verlag London Limited, 2008, 1137 p.

11. Xie J., Wood I. D.L., Wayne D.M., Zawodzinski T.A., Atanassov P., Borup R.L. J. Electrochem. Soc., 2005, vol. 152, p. A104.

12. Mukherjee P.P., Wang C.Y. J. Electrochem. Soc., 2006, vol. 153, p. A840.

13. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. J. Power Sources, 2008, vol. 175, p. 699.

14. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. J. Power Sources, 2008, vol. 175, p. 712.

15. Chirkov Yu.G., Rostokin V.I. Aktivnyj sloj katoda toplivnogo èlementa s polimernym èlektrolitom: priroda kanalov podači protonov i kisloroda. Èlektrohimiâ, 2012, vol. 48, p.1192 [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem, 2012, vol. 48, p. 1086] [in Russ.].

16. Chirkov Yu.G., Rostokin V.I. Katod toplivnogo èlementa s tverdym polimernym èlektrolitom: konstruiro-vanie optimalʹnoj struktury aktivnogo sloâ. Èlektrohimiâ, 2014, vol. 50 (9), p. 968 [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem, 2014, vol. 50 (9), p. 872] [in Russ.].

17. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlemen-ta s polimernym èlektrolitom: učet processa diffuzii kis-loroda v zernah podložki. International Scientific Jour-nal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2014, no. 6, pp. 8–15 [in Russ.].

18. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlemen-ta s polimernym èlektrolitom: o faktorah, tormozâŝih polnocennoe protekanie processa generacii toka. International Scientific Journal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2014, no. 9, pp. 8–21 [in Russ.].

19. Chirkov Yu.G. Poristye èlektrody v èlektro-himičeskih tehnologiâh: kompʹûternoe modelirovanie. International Scientific Journal «Alʹternativnaâ èner-getika i èkologiâ» (ISJAEE), 2014, 9, pp. 55–59 [in Russ.].

20. Chirkov Yu.G., Rostokin V.I. Process zatopleniâ vodoj aktivnogo sloâ katoda toplivnogo èlementa s tverdym polimernym èlektrolitom. International Scien-tific Journal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2014, no. 14, pp. 58–68 [in Russ.].

21. Chirkov Yu.G., Rostokin V.I. O stepeni zapolneniâ zeren podložki vodoj: aktivnyj sloj katoda toplivnogo èlementa s nafionom. kompʹûternoe modelirovanie. International Scientific Journal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2014, no. 17, pp. 57–65 [in Russ.].

22. Parthasarathy A., Srinivasan S., Appleby A.J., Martin C.R . Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion - a microelectrode investigation. J. Electrochem. Soc., 1992, vol. 139, p. 2530.

23. Chirkov Yu.G., Rostokin V.I. Teoriâ poristyh èlektrodov: rasčet gabaritnyh harakteristik katoda dlâ slučaâ, kogda polârizacionnaâ krivaâ imeet učastki s različnymi naklonami. Èlektrohimiâ, 2006, vol. 42(7), p. 806 [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem., 2006, vol. 42 (9), p. 722] [in Russ.].


Review

For citations:


Chirkov Yu.G., Rostokin V.I. COMPUTER SIMULATION OF ACTIVE LAYER FUEL CELL WITH POLYMER ELECTROLYTE: HOW DEGREE FILLING OF SUPPORT GRAIN BY WATER INFLUENCES ON OVERALL CURRENT. Alternative Energy and Ecology (ISJAEE). 2015;(4):46-57. (In Russ.) https://doi.org/10.15518/isjaee.2015.04.003

Views: 979


ISSN 1608-8298 (Print)