

SUPER HIGH-VOLTAGE ELECTRIC MOTOR WITH AMORPHOUS MAGNETIC WIRES FOR THE AIR SUPPLYING SYSTEM OF HYDROGEN FUEL ELEMENTS
https://doi.org/10.15518/isjaee.2017.16-18.104-117
Abstract
The paper deals with the hydrogen fuel cells that are one of the important directions of development of the global energy. Hydrogen fuel cells are being actively implemented in the aviation systems, for example in Airbus A320 (Boeing and Airbus announced the creation of an auxiliary power unit fuel cell with capacity up to 200 kW in 2017-2018). In the automotive industry, hydrogen fuel cells are also widely used. However, the efficient use of hydrogen fuel cells is not possible without the establishment of effective systems related to their operation. Therefore, the paper proposes a new topology of high-speed motor for compressor of the hydrogen fuel cell and presents an original solution to raise the energy efficiency of high-speed motor, based on the amorphous alloys. The research of the new design methods of computer modeling in Ansys Maxwell was conducted; optimal geometric dimensions of the high-speed motor with two-pole and four-pole magnetic system were obtained. In the modeling losses on eddy currents in permanent magnets and iron of the rotor for two-pole and four-pole magnetic systems were taken into account. All the theoretical results have been experimentally verified. For this purpose, the layout of the high-speed motor with the perforated winding was created. Design of the experimental model is also described. The high-speed motor testing and analysis of test data take a special place in this paper. In the experimental tests, it was found that the efficiency of the topology is 92.8 % and the power density of the high-speed motor is 0.21 kg/kWh with air cooling. These experimental tests prove the effectiveness of the topology compared to the known world analogues. Moreover, the use of this topology is proven to allow minimizing the mass of a hydrogen fuel cell with improved energy efficiency. This is especially important for the aerospace applications and automotive industry.
About the Authors
F. R. IsmagilovRussian Federation
Fljur Ismagilov - D.Sc. (engineering), Professor at the Electromechanics Department.
12 K. Marx str., Ufa, 450008.
V. E. Vavilov
Russian Federation
Vyacheslav Vavilov - Ph.D. (engineering), Associate Professor at the Electromechanics Department.
12 K. Marx str., Ufa, 450008.
A. H. Miniyarov
Russian Federation
Aybulat Miniyarov - 2-year Postgraduate, the engineer at the Electromechanics Department.
12 K. Marx str., Ufa, 450008.
R. R. Urazbakhtin
Russian Federation
Ruslan Urazbakhtin - 2-year Student, Laboratory Assistant at the Electromechanics department.
12 K. Marx str., Ufa, 450008.
References
1. Harrison D., Thonhauser T. Corrigendum to “Suppressing diborane production during the hydrogen release of metal borohydrides: The example of alloyed Al(BH4)3. International Journal of Hydrogen Energy, 2016;41(July):3571–3578 (Eng.).
2. Shalimov Yu.N., Koifman O.I., Terukov E.I., Litvinov Yu.V., Gusev A.L., Bataronov I.L., Parfenyuk V.I., Lutovats M., Tirichenko Yu.S., Shalimov D.L., Tokareva I.A., Pavlov A.S., Trofimets I.N., Golodyaev A.I. Hydrogen in traditional and alternative energy systems (Vodorod v sistemakh traditsionnoi i al'ternativnoi energetiki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2013;(5/1):10–44 (in Russ.).
3. Molkov V., Kashkarov S. Blast wave from a high-pressure gas tank rupture in a fire: Stand-alone and under-vehicle hydrogen tanks. International Journal of Hydrogen Energy, 2016;41(18):12581–12603 (Eng.).
4. Dubas F., Espanet C., Miraoui A.Design of a high-speed permanent magnet motor for the drive of a fuel cell air-compressor. 2005 IEEE Vehicle Power and Propulsion Conference, 2005, pp. 603–610 (Eng.).
5. Mekhiche M., Nichols S., Kirtley J.L. , Boudreau D., Jodoin R. High-speed, high-power density PMSM drive for fuel cell powered HEV application. IEEE International Electric Machines and Drives Conference, IEMDC, 2001, pp. 658–66 (Eng.).
6. Barta J., Uzhegov N., Ondrusek C., Pyrhönen J. High-Speed Electrical Machine Topology Selection for the 6 kW, 120 000 rpm Helium Turbo-Circulator. International Review of Electrical Engineering. 2017;11(1):36-44 (Eng.).
7. Krahenbuhl D., Zwyssig C., Weser H., Kolar J.W.Miniature 500 000- r/min electrically driven turbocompressor. IEEE Trans. Industry Applications, 2010;46(6):2459–2466 (Eng.).
8. Dongdong Z. Control of an ultrahigh speed centrifugal compressor for the air management of fuel cell systems. Other. Universit´e de Technologie de Belfort-Montbeliard, 2013, pp. 56–73 (Eng.).
9. Zhao D., Daniel K., Blunier B., Christof Z., Dou M., Miraoui A. Design and Control of an Ultra High Speed Turbo Compressor for the Air Management of Fuel Cell Systems. Transportation Electrification Conference and Expo (ITEC), 2012 IEEE, pp. 134–159 (Eng.).
10. Blunier B., Miraoui A. Proton exchange membrane fuel cell air management in automotive applications. Journal of Fuel Cell Science and Technology, 2010;7(041007):213–216 (Eng.).
11. Luomi J., Zwyssig C., Looser A., Kolar J. Efficiency optimization of a 100-w 500 000-r/min permanent-magnet machine including airfriction losses. Industry Applications, IEEE Transactions on industry applications, 2009;45(4):1368–1377 (Eng.).
12. Vahidi A., Stefanopoulou A., Peng H. Model predictive control for starvation prevention in a hybrid fuel cell system. Proc. American Control Conf., 2004;1:834–839 (Eng.).
13. Uzhegov N., Kurvinen E., Nerg J., Sopanen J.T., Shirinskii S.Multidisciplinary Design Process of a 6-Slot 2-Pole High-Speed Permanent-Magnet Synchronous Machine. IEEE Transactions on Industrial Electronics, 2016, pp. 523–531 (Eng.).
14. Polinder H., Hoeijmakers MJ.Eddy-Current Losses In The Permanent Magnets OF A PM Machine. EMD97 1-3 September 1997 Conference Publication, 1997;444:138-142 (Eng.).
15. Gerling D., Mohammed A. Six-Phase Electrically Excited Synchronous Generator for More Electric Aircraft. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2016, pp. 7–13 (Eng.).
16. Nagorny A., Dravid N., Jansen R., Kenny B. Design Aspects of a High Speed Permanent Magnet Synchronous Motor. Generator for Flywheel Applications”, NASA/TM-2005-213651, pp.1–7 (Eng.).
17. Gieras J.F. Highspeed machines. Advancements in Electric Machines (Power Systems), 2008, pp. 81–113 (Eng.).
18. Bailey C., Saban D., Guedes- Pinto P.Design of High-Speed Direct-Connected Permanent-Magnet Motors and Generators for the Petrochemical Industry. IEEE Transactions on Industry Applications, 2009;45(3):1159–1165 (Eng.).
19. Borisavljevic A., Polinder H., Ferreira J. On the Speed Limits of Permanent-Magnet Machines. IEEE Transactions on Industrial Electronics, 2010; 57(1):220–227 (Eng.).
20. Ismagilov F., Khairullin I., Vavilov V., Gumerov M. Application of hybrid magnetic bearings in aviation starter-generators. International Review of Electrical Engineering, 2016;9(3):506–510 (Eng.).
21. Vavilov V., Ismagilov F.R., Hairullin I., Gusakov D. High Efficiency Ultra-High Speed Microgenerator. Conf. Rec. IEEE IECON, 2016, pp 432–442 (Eng.).
22. Yakupov A., Ismagilov F., Khayrullin I., Vavilov V.Method of designing high-speed generators for the biogas plant. International Journal of Renewable Energy Research, 2016;6(2):447–454 (Eng.).
23. Patent DE 102012207508 A1, Germany, Stator für eine elektrische Maschine und Verfahren zum Herstellen eines Stators für eine elektrische Maschine / Manfred Rührig, applicant Siemens Aktiengesellschaft (07.07.2013) (Eng.).
24. Wang Z. [et al.]. Z Development of a permanent magnet motor utilizing amorphous wound cores. IEEE Trans. Magn., 2010;46(2):570–573 (Eng.).
25. Wang Z. [et al.]. Z Development of an axial gap motor with amorphous metal cores. IEEE Trans. Ind. Appl., 2011;47(3):1293–1299 (Eng.).
26. Pabut O., Kirs M., Lend H., Tiirats T. Optimal structural design of a slotless permanent magnet generator. Proceedings of the International Conference of DAAAM Baltic “Industrial Engineering”, 2015;1:75–78 (Eng.).
27. Koo M., Choi J-Y., Jeong J.-H., Shin H.-J., Hong K. Characteristic analysis of permanentmagnet synchronous generator with slotless stator structure considering magnetic/mechanical air gap using semi-3-d analytical method. IEEE Transactions on Magnetics, 2015;51(11):87–92 (Eng.).
28. Uzhegov N., Pyrhonen J., Shirinskii S. Loss minimization in high-speed Permanent Magnet Synchronous Machines with tooth-coil windings. IECON Proceedings (Industrial Electronics Conference) 6699601, 2013, pp. 2960–2965 (Eng.).
Review
For citations:
Ismagilov F.R., Vavilov V.E., Miniyarov A.H., Urazbakhtin R.R. SUPER HIGH-VOLTAGE ELECTRIC MOTOR WITH AMORPHOUS MAGNETIC WIRES FOR THE AIR SUPPLYING SYSTEM OF HYDROGEN FUEL ELEMENTS. Alternative Energy and Ecology (ISJAEE). 2017;(16-18):104-117. (In Russ.) https://doi.org/10.15518/isjaee.2017.16-18.104-117