Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ANTI-REFLECTIVE PROPERTIES OF GRADIENT-POROUS SILICON

https://doi.org/10.15518/isjaee.2017.19-21.016-025

Abstract

The theoretically achievable efficiency of the PEC for the single-cell solar cells (SC) is 30%. However, the cost of electricity generated by means of the solar cells has already become equal to that of natural gas. At the same time, the maximum confirmed efficiency for the solar cell is 26.3%. Thus, a certain lag behind the theoretically possible value is still observed. Analysis of the losses of modern photoelectric converters shows that at least 10% of them are related to the reflectivity of the SC surface. Therefore, along with intensive studies on heterojunction, thin-film constructive solutions, much attention is paid to other ones that allow for more than double the conversion efficiency. The paper deals with the formation of antireflective coatings on the surface of the PEC. One of the promising antireflection materials, which is widely studied at the present time, is porous silicon, called black silicon (black silicon b-Si) in the literature. The development of chemical and anodic silicon etching technologies, as well as the low cost and simplicity of the forming process, allow producing b-Si structures with controlled parameters of the antireflection layers. This paper presents the comparative results of the investigation of the reflection coefficients of various porous films obtained by anodic etching of the surface of silicon wafers with orientations (100) and (111). Experimental data indicate a significant decrease in the reflection coefficient in the visible light range from 400 to 1200 nm for all samples with porous layers compared to samples without porous layers. Especially noticeable is the decrease in the degree of reflection for the variational gradient-porous (GPSi-var) structures with a nano-porous outer layer. The magnitude of the reflection coefficient for such structures falls to the level of 0.1% in the range of the investigated frequencies of light radiation. For all porous layers, the tendency of decreasing the degree of reflection is typical as the wavelength of light decreases to less than 10% (compared to the reflection coefficient of the surface of silicon wafer at 30%).

About the Authors

E. A. Gosteva
NUST “MISiS”
Russian Federation
Postgraduate, Department of Material Science of Semiconductors and Dielectrics


V. V. Starkov
Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Russian Federation
Ph.D. (engineering), Senior Researcher


Yu. N. Parhomenko
NUST “MISiS”
Russian Federation
D.Sc. (physics and mathematics), Head of Department of Material Science of Semiconductors and Dielectrics


M. O. Kah
NUST “MISiS”
Russian Federation
Associate Professor, Department of Material Science of Semiconductors and Dielectrics


I. A. Iwe
NUST “MISiS”
Russian Federation
M.Sc.


References

1. [Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D., Levi D.H., Ho-Baillie A.W.Y. Solar cell efficiency tables (version 49). Prog. Photovolt: Res. Appl., 2016;25;3–13 (in Eng.).

2. Shockley W., Queisser H.J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys., 1961;32:510 (in Eng.).

3. Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Trends and Perspectives of Solar Photovoltaics (Tendentsii i perspektivy razvitiya solnechnoi fotoenergetiki). FTP, 2004;38(8):937–948 (in Russ.).

4. Battaglia C., Cuevas A., De Wolf S. Highefficiency crystalline silicon solar cells: Status and perspectives. Energy and Environmental Science, 2016;9(5):1552–1576 (in Eng.).

5. Aberle A.G., Zhanga W., Hoexa B. Advanced loss analysis method for silicon wafer solar cells. Energy Procedia, 2011;8:244–249 (in Eng.).

6. Nishijima Y., Komatsu R., Ota Sh., Seniutinas G., Balčytis A., Juodkazis S. Anti-reflective surfaces: Cascading nano/microstructuring. APL Photonics, 2016;1:076104 (in Eng.).

7. Yuan Hao-Chih, Yost V. E., Page M.R., Stradins P., Meier D.L., Branz H.M. Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules. Appl. Phys. Lett., 2009;95:123501 (in Eng.).

8. Yamada N., Ijiro T., Okamoto E., Hayashi K., Masuda H. Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module. Opt. Express, 2011;19(S2):A118–A125 (in Eng.).

9. Korotcenkov G., Porous Silicon: From Formation to Applications. Optoelectronics, Microelectronics, and Energy Technology Applications, vol. 3. CRC Press, 2016 (in Eng.).

10. Brongersma M.L., Cui Y., and Fan S., Light management for photovoltaics using high-index nanostructures. Nature materials, 2014;13(5):451–460 (in Eng.).

11. Roodenko K., Rappich J., Yang F., Zhang X., Esser N., Hinrichs K. Anisotropy in HydrogenPassivated and Organically Modified Nanoporous Silicon Surfaces Studied by Polarization Dependent IR Spectroscopy. Langmuir, 2009;25(3):1445-1452 (in Eng.).

12. Zhao Y. Engineering Porous Silicon Photonic Structures towards Fast and Reliable Optical Biosensing, Vanderbilt University, 2017 (in Eng.).

13. Gianneta V., Travlos A., Nassiopoulou A.G. High-Performance Crystalline Si Solar Cell on n-Type Si with a Thin Emitter by Al-Induced Crystallization and Doping. IEEE Journal of Photovoltaics, 2016;6(5)1109– 1114 (in Eng.).

14. Djurisic A.B., Fangzhou L., Ng A.M.C., et al. Stability issues of the next generation solar cells. Physica Status Solidi–Rapid Research Letters, 2016;10(4):281–299 (in Eng.).

15. Zhiqin Y., Mingdun L., Xi Y., et al. Highperformance black multicrystalline silicon solar cells by a highly simplified metal-catalyzed chemical etching method. IEEE Journal of Photovoltaics, 2016;6(4):888– 893 (in Eng.)

16. Jang, H.S., Choia H.-J., Ohb B.-Y., Kim J.H. Combinational Approach of Electrochemical Etching and Metal-Assisted Chemical Etching for p-Type Silicon Wire Formation. Electrochemical and Solid-State Letters, 2011;14(1):D5–D9 (in Eng.).

17. Arenas M.C., Vega M., Martinez O., and Salinas O.H. Nanocrystalline porous silicon: structural, optical, electrical and photovoltaic properties. Chapter from the book “Crystalline Silicon–Properties and Uses”, pp. 251–274 (in Eng.).

18. Gao P., Wang H., Sun X., Han W., Li J., Ye J. Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications. Appl. Phys. Lett., 2013;103:253105 (in Eng.).

19. Mokrushin A., Bardyshev I., Serebryakova N., Starkov V. Positron annihilation and infrared spectroscopy studiesof porous silicon. Physica Status Solidi (a), 2003;197(1):212–216 (in Eng.).

20. Starkov V.V., Ipzhak D.V., Barabanenkov M.Yu. Poristyi kremnii: svoistva i aktual'nye primeneniya. Perspektivnye materialy, 2008;6(1):102– 108 (in Eng.).

21. Starkov V.V., Starostina E.A., Volkov V.T., Vyatkin A.F. Formation of Local Insulating Regions by Stain Mask Etching. Russian Microelectronics, 2001;30(2):88–93 (in Eng.).

22. Starkov V.V., Starostina E.A., Vyatkin A.F., Volkov V.T. Dielectric porous layer formation in Si and Si/Ge by local stain etching. Phys. Stat. Sol.(a), 2000;182:93–96 (in Eng.).

23. Vyatkin A., Starkov V., Tzeitlin V., Presting H., Konnle J., König U. Random and ordered macropore formation in p-type silicon. J. Electrochem. Soc., 2002;149(1):G70-G76 (in Eng.).

24. Shatkovskis E., Mitkyavichus R., Zagadskii V., Stupakova I. An abnormal increase in the filling factor of the current-voltage characteristic in the short-wavelength region of the solar spectrum for a silicon photocell containing a structure of porous silicon (Anomal'noe uvelichenie koeffitsienta zapolneniya vol'tampernoi kharakteristiki v korotkovolnovoi oblasti solnechnogo spektra u kremnievogo fotoelementa, soderzhashchego strukturu iz poristogo kremniya). Pis'ma v ZhTF, 2013;39(21):23–29 (in Russ.).

25. Starkov V.V., Sedlovec D.M., Knyazev M.A., Redkin A.N. Graphene-like films deposition in the porous structure of silicon electrodes. Protection of Metals and Physical Chemistry of Surfaces. 2017;53(1):85–87 (in Eng.).


Review

For citations:


Gosteva E.A., Starkov V.V., Parhomenko Yu.N., Kah M.O., Iwe I.A. ANTI-REFLECTIVE PROPERTIES OF GRADIENT-POROUS SILICON. Alternative Energy and Ecology (ISJAEE). 2017;(19-21):16-25. (In Russ.) https://doi.org/10.15518/isjaee.2017.19-21.016-025

Views: 1562


ISSN 1608-8298 (Print)