

THE CAPABILITIES OF OPEN SOURCE CFD CODE FOR MODELING THE STAND TANK FILLING PROCESS WITH LIQUID HYDROGEN
https://doi.org/10.15518/isjaee.2017.19-21.074-087
Abstract
About the Authors
A. G. GaleevRussian Federation
D.Sc. (engineering), Professor of Management of Operation of RSS department of Moscow Aviation Institute, Laureate of USSR Council of Ministers in the field of science and technology, member of the K.E. Tsiolkovsky Russian Academy of Cosmonautics, Chief Researcher of the PCF “SIC RSI”
V. A. Orlov
Russian Federation
Ph.D. (engineering), Senior Research Scientist
References
1. Galeev A.G., Kuchkin V.N., Saydov G.G. On the experience of bench testing of propulsion systems, upper stages of launch vehicles hydrogen fuel (Ob opyte stendovoi otrabotki dvigatel'nykh ustanovok verkhnikh stupenei raket-nositelei na vodorodnom toplive). Proceedings of the all-Russian Scientific-Technical Conference “Actual problems of RKT”, Samara, Sanz RAS, 2009, p. 53–54 (in Russ.).
2. Galeev A.G., Firsov V.P., Antyukhov I.V., Galeev A.V. For investigating the heat transfer processes in prelaunch cooling of the expenditure highways do boosters RCS (K voprosu issledovaniya protsessov teploobmena pri predstartovom zakholazhivanii raskhodnykh magistralei DU razgonnykh blokov RKS). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(21):156–166 (in Russ.).
3. Bershadskiy V.A., Galeev A.G., Denisov K.P. Intensity of heat-mass transfer in the tank of the power supply system of the power plant with cryogenic component of the fuel (Intensivnost' teplo-massoobmena v bake sistemy pitaniya energoustanovki s kriogennym komponentom topliva). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2008;(11):56–63 (in Russ.).
4. Galeev A.G., Denisov K.P., Ishchenko V.I., Liseykin V.A., Saydov G.G., Cherkashin A.Yu. Testing complexes and experimental testing of liquid rocket engines (Ispytatel'nye kompleksy i eksperimental'naya otrabotka zhidkostnykh raketnykh dvigatelei). Ed. by N.F. Moiseev. – Moscow: Mechanical Engineering / Mechanical Engineering Flight, 2012 (in Russ.).
5. OpenFOAM® – Official home of The Open Source Computational Fluid… Available on: http://openfoam.com (30.06.17) (in Eng.).
6. Weller H.G., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 1998;12:620–631 (in Eng.).
7. Nima Sam. EvaPhaseChangeFoamU. A VOF method to phase change modeling. Available on: http://www.cfd-online.com (30.06.17) (in Eng.).
8. Welch S.W.J., Wilson J. A Volume of Fluid Based Method for Fluid Flows with Phase Change. Journal of Computational Physics, 2000;169:662–682 (in Eng.).
9. Welch S.W.J., Radichi T. Numerical computation of film boiling including conjugate heat transfer. Numerical Heat Transfer, 2002; B(42):35–53 (in Eng.).
10. Wiesche S. aus der. Bubble growth and departure during nucleate boiling: The occurrence of heat flux reversal. In Proceedings of the 4th International Conference on Computational Heat and Mass Transfer, 2005 (in Eng.).
11. Hardt S., Wondra F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms. Journal of Computational Physics, 2008;227:5871–5895 (in Eng.).
12. Shu B., Dammel F. et al. Phase change model for two phase fluid flow based on the volume of fluid method ICHMT. International Symposium on Advances in Computational Heat Transfer, Marrakech, Morocco, 2008 (in Eng.).
13. Shu B. Numerische Simulation des Blasensiedens mit Volume-Of-Fluid- und Level-SetMethode. Ph.D. thesis, Technische Universität Darmstadt, 2009 (in Eng.).
14. Kunkelmann C. Numerical Modeling and Investigation of Boiling Phenomena. Genehmigte Dissertation von Dipl.-Ing. Darmstadt, 2011 (in Eng.).
15. Hirt C.W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981;39:201–225, (in Eng.).
16. Rusche H. Computational fluid dynamics of dispersed two-phase flows at high phase fraction. Ph.D. thesis, Imperial College of Science, Technology and Medicine, London, 2002 (in Eng.).
17. Brackbill J.U., Kothe D.B. et al. A Continuum Method for Modeling Surface Tension. Journal of Computational Physics, 1992;100:335–354 (in Eng.).
18. Ubbink O. Numerical prediction of two fluid systems with sharp interfaces. Ph.D. thesis, Imperial College of Science, Technology and Medicine, London, 1997 (in Eng.).
19. Schrage R.W. A theoretical study of interphase mass transfer. Columbia University Press, New York, 1953.
20. Marek R., Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer, 2001;44:39–53, (in Eng.).
21. Son G., Dhir V.K., Ramanujapu N. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. Journal of Heat Transfer, 1999;121:623–631 (in Eng.).
22. Kunkelmann C., Stephan P. / CFD simulation of boiling flows using the volume-of-fluid method within OpenFOAM. Numerical Heat Transfer, 2009;A(56):631–646 (in Eng.).
Review
For citations:
Galeev A.G., Orlov V.A. THE CAPABILITIES OF OPEN SOURCE CFD CODE FOR MODELING THE STAND TANK FILLING PROCESS WITH LIQUID HYDROGEN. Alternative Energy and Ecology (ISJAEE). 2017;(19-21):74-87. (In Russ.) https://doi.org/10.15518/isjaee.2017.19-21.074-087