Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

PREPARATION AND STUDY OF CERAMIC MEMBRANE REACTOR FOR HYDROGEN SULFIDE CATALYTIC DECOMPOSITION

https://doi.org/10.15518/isjaee.2017.25-27.013-023

Abstract

The paper studies a number of alumina ceramic membrane catalysts of various design and composition for high temperature H2S decomposition. The design of two types of catalytic membranes used consists of sandwich-like structure including (1) “catalytic layer”/”membrane support”/”membrane layer” and (2) “catalytic layer”/”membrane support”/”intermediate layer”/”membrane layer”. The paper describes: the physical and chemical properties (pore structure, specific surface area and phase composition) of membrane supports and membrane layers calcined at different temperatures; the methods of various composition membrane reactors preparation; the data on membrane permeability on H2 and H2S; the test results of prepared membranes in the reaction of H2S decomposition. The introduction of La2O3 modifying additions in a membrane layer is shown to lead to the increase of thermal stability of a membrane. The effective diameter of pores of membrane layer having 5%La2O3-γ-Al2O3 composition and calcined at 900ºC is three times lower than of the unmodified γ-Al2O3. The presence of pure γ-Al2O3 phase in the modified membrane layer is observed while the δ-Al2O3 phase is formed in the unmodified sample. The pore structure and the thickness of the membrane layer are demonstrated to significantly influence permeability of H2 and H2S. There has been observed a significant improvement of the catalytic activity in the H2S decomposition reaction compared with a granulated catalyst because the separation coefficient of H2/H2S is higher than 2.5. It has been determined that the introduction an intermediate layer, which has different effective pore diameter in comparison with the membrane layer, to the membrane composition increases significantly the H2S conversion. The membrane reactor consisting of the membrane layer (6 m thickness, pore diameter 45 Å) and the intermediate layer (9 m thickness, pore diameter 110 Å) has been found to exhibit maximal efficiency in the H2S decomposition reaction. The H2S conversion reaches 65% at 900ºC on the membrane catalyst of optimal composition.

 

About the Authors

S. R. Khairulin
Boreskov Institute of Catalysis SB RAS
Russian Federation
Ph.D. (chemistry), Head of Laboratory of Environmental Catalysis


V. V. Kuznetsov
Boreskov Institute of Catalysis SB RAS
Russian Federation
Engineer D.Sc. (chemistry), Senior Researcher


O. Yu. Podyacheva
Boreskov Institute of Catalysis SB RAS
Russian Federation
D.Sc. (chemistry), Senior Researcher


Z. R. Ismagilov
Boreskov Institute of Catalysis SB RAS; Institute of Coal Chemistry and Material Science SB RAS
Russian Federation
D.Sc. (chemistry), Professor, Corresponding Member of RAS, Director of Institute of Coal Chemistry and Material Science of Federal Research Centre of Coal and Coal Chemistry SB RAS


References

1. Palma V., Vaiano V., Barba D., Colozzi M., Palo E., Barbato L. H2 production by thermal decomposition of H2S in the presence of oxygen. Int. J. Hydrog. Energy., 2015;40(1):106–113.

2. Gao B., Han X., Zhang H. Study on H2S monitoring technique for high risk wellsite. 2012 Int. Symp. Saf. Sci. Technol., 2012;(45):898–903.

3. Clark P.D., Hyne J.B., Tyrer J.D. Chemistry of organosulphur compound types occurring in heavy oil sands. Fuel, 1983;62(8):959–962.

4. Mohit N., Randhir S., Naveen K., Sushant U. Desulphurization of coke oven gas. Int. J. Sci. Res. Rev., 2013;2(1):13–22.

5. Stanek J., Gift J., Woodall G., Foureman G. Hydrogen sulfide: Integrative analysis of acute toxicity data for estimating human health risk, Encyclopedia of Environmental Health, Elsevier, 2011, PP. 124–139.

6. Clark P.D., Dowling N.I., Huang M. Production of H2 from catalytic partial oxidation of H2S in a short-contacttime reactor. Catal. Commun., 2004;5(2):743–747.

7. Batygina M.V., Dobrynkin N.M., Kirichenko O.A., Khairulin S.R., Ismagilov Z.R. Studies of supported oxide catalysts in the direct selective oxidation of hydrogen sulfide. Reac. Kinet. Catal. Lett., 1992;48(1):55–63.

8. Ismagilov Z.R., Kerzhentsev M.A. Direct selective catalytic oxidation of H2S. Technol. Int., 1994(Quarterly, Winter Issue):56–64.

9. Ismagilov Z.R., Kerzhentsev M.A., Khairulin S.R., Kuznetsov V.V. One stage catalytic methods for purification of sour gases from hydrogen sulfide (Odnostadiinye kataliticheskie metody ochistki kislykh gazov ot serovodoroda). Chem. Sus. Dev., 1999;7(4):375–396 (in Russ.).

10. Manenti F., Papasidero D., Ranzi E. Revised kinetic scheme for thermal furnace of sulfur recovery units, Chem. Eng. Trans., 2013;32:1185–1290.

11. Zaman J., Chakma A. Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process. Technol., 1995;41(2):159–198.

12. Galuszka J., Iaquaniello G., Ciambelli P., Palma V., Brancaccio E. Membrane-assisted catalytic cracking of hydrogen sulphide (H2S), Membrane Reactors for Hydrogen Production Processes / ed. De De Falco M., Marrelli L., Iaquaniello G. London: Springer London, 2011, P. 161–182.

13. Reverberi A.P., Klemeš J.J., Varbanov P.S., Fabiano B. A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. J. Clean. Prod., 2016;136:72–80.

14. Reshetenko T.V., Khairulin S.R., Ismagilov Z.R., Kuznetsov V.V. Study of the reaction of hightemperature H2S decomposition on metal oxides (γ- Al2O3,α-Fe2O3,V2O5). Int. J. Hydrog. Energy., 2002;27(4):387–394.

15. Kaloidas V., Papayannakos N. Hydrogen production from the decomposition of hydrogen sulphide. Equilibrium studies on the system H2S/H2/Si, (i = 1,…,8) in the gas phase. Int. J. Hydrog. Energy, 1987;12(6):403–409.

16. Zaman, J. A simulation study on the thermal decomposition of hydrogen sulfide in a membrane reactor. Int. J. Hydrog. Energy, 1995;20(1):21–28.

17. Badra, C. Porous membrane reactors for hydrogen sulfide splitting. Int. J. Hydrog. Energy, 1995;20(9):717–721.

18. Kameyama T., Dokiya M., Fujishige M., Yokokawa H., Fukuda K. Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes. Int. J. Hydrog. Energy, 1983;8(1):5–13.

19. Fukuda K., Dokiya M., Kameyama T., Kotera Y. Catalytic Decomposition of Hydrogen Sulfide. Ind. Eng. Chem. Fundam., 1978;17:243–8.

20. Sugioka M., Aomura K. A possible mechanism for catalytic decomposition of hydrogen sulfide over molybdenum disulfide. Int. J. Hydrog. Energy, 1984;9:891–894.

21. Kaloidas V.E., Papayannakos N.G. Kinetic studies on the catalytic decomposition of hydrogen sulfide in a tubular reactor. Ind. Eng. Chem. Res., 1991;30:345–351.

22. Ismagilov Z.R., Podyacheva O.Y., Sakashita M., Tsykoza L.T., Shikina N.V., Ushakov V.A. Development of Fe-based catalysts for purification of coke oven gases. Book Abstr., vol. 1, Paris: 2004, p. 301.

23. Podyacheva O.Yu., Ismagilov Z.R., Tsykoza L.T., Sakashita M., Shikina N.V., Ushakov V.A. Study of Fe-based catalysts in the purification of coke oven gases. Eurasian Chem-Technol J., 2005;7:3–4.

24. Yumura M., Furimsky E. Hydrogen sulphide adsorption and decomposition in the presence of manganese nodules. Appl. Catal., 1985;16:157–167.

25. Peureux, J. Etude de reacteurs catalytiques a membrane. Caracterisation des transferts par mesures de permeabilite gazeuse. Application aux reactions triphasiques: PhD Thesis. Lyon: Universite Claude Bernard Lyon I, 1994, 168 p.

26. Uzio D., Peureux J., Giroir-Fendler A., Torres M., Ramsay J., Dalmon J.-A. Platinum/γ-Al2O3 catalytic membrane: preparation, morphological and catalytic characterizations, Appl. Catal. Gen., 1993;96:83–97.

27. Yoon M.-Y., Kim E.-Y., Kim Y.-H., Whang C.- M. Gas Permeation of SiC Membrane Coated on Multilayer γ-Al2O3 with a Graded Structure for H2 Separation. Korean J. Mater. Res., 2010;20:451–456.


Review

For citations:


Khairulin S.R., Kuznetsov V.V., Podyacheva O.Yu., Ismagilov Z.R. PREPARATION AND STUDY OF CERAMIC MEMBRANE REACTOR FOR HYDROGEN SULFIDE CATALYTIC DECOMPOSITION. Alternative Energy and Ecology (ISJAEE). 2017;(25-27):13-23. (In Russ.) https://doi.org/10.15518/isjaee.2017.25-27.013-023

Views: 622


ISSN 1608-8298 (Print)