

ABOUT THE CALCULATION OF THE NIS MATRIX'S MICRO COOLER FOR TARGETS WITH FROZEN NUCLEAR POLARIZATION OF HYDROGEN AND DEUTERIUM IN PARTICLE ACCELERATORS
https://doi.org/10.15518/isjaee.2017.25-27.035-044
Abstract
The paper deals with alternative cooling technologies for cryogenic targets with frozen polarization of hydrogen and deuterium nuclei. These targets are used on particle accelerators in experiments on the matter properties, and the results allow improving the fuel cryogenic targets in the implementation of inertial thermonuclear fusion. An important direction here is generation of spherical deuterium-tritium cryogenic targets. The creation of such cryogenic targets and optimization of their design requires large number of scientific experiments on particle accelerators. In accordance with conditions of the physical experiment two types of targets are used: a passive target (only for generation of secondary particles) and an active target (with built-in detector of secondary particles). An example of the active target may be a cryogenic ionization chamber where the extracted beam is used to study the temperature dependence of muonic catalysis of nuclear fusion in deuterium gas, hydrogen-deuterium and mixtures of deuteriumhydrogen. In order to cool cryogenic targets down to temperatures of 4.2–40 K helium refrigerators are used. However, a number of physical experiments especially for particles with large aperture angles require the usage of targets with frozen nuclear polarization. At the same time, the working temperature of the target is reduced to 100–300 mK. These temperatures are reachable in a continuous mode only in dilution refrigerators 3He- 4He. The discovery of the temperature reduction effect in the structures of the normal metal-insulator-superconductor (NIS) by tunneling of electrons through the junction (electron cooling) have led to active study of these devices in labs across the world not only as the active thermometer to measure the temperature in the region of < 300 mK but also as independent generators of cooling power. The main prospect of this direction is the creation of cooling devices on the basis of NIS matrix. In this paper we propose to use these devices with dilution refrigerators or separately in particle accelerators. It will minimize the size of the installation, reduce financial costs and enhance reliability during experiments. An example of a scheme of the accelerator with unit for the target cooling is provided. The paper in accordance with previously published results proposes the method for evaluative calculation of the number of NIS elements for cooler of targets with frozen nuclear polarization of hydrogen and deuterium.
About the Authors
A. Yu. TitovRussian Federation
Student in the department of Refrigerating and Cryogenic Equipment, Conditioning and Life Support Systems
I. A. Arkharov
Russian Federation
D.Sc. (engineering), Full Professor in the department of Refrigerating and Cryogenic Equipment, Conditioning and Life Support Systems of Bauman Moscow State Technical University, vice-president of the commission A1 of the International Institute of Refrigeration (IIR, France)
B. A. Ivanov
Russian Federation
D.Sc. (engineering), Full Professor in the department of Refrigerating and Cryogenic Equipment, Conditioning and Life Support Systems
A. M. Arkharov
Russian Federation
D.Sc. (engineering), Full Professor in the department of Refrigerating and Cryogenic Equipment, Conditioning and Life Support Systems
E. S. Navasardyan
Russian Federation
Ph.D. (engineering), Associate Professor in the department of Refrigerating and Cryogenic Equipment, Conditioning and Life Support Systems
References
1. World Energy Outlook 2016. Available on: www.iea.org/weo/ (accessed 01.10.2017) (in Eng.).
2. Aleksandrov A.A., Arkharov I.A., Navasardyan E.S. Machines and apparatuses of cryogenic systems (Mashiny i apparaty kriogennykh system). Moscow: MGTU im. N.E.Baumana, 2009 (in Russ.).
3. Muhonen J.T., Meschke M., Pekola J.P. Micrometer-scale refrigerators. ArXiv e-prints, 1203.5100v1, Mar 2012 (in Eng.).
4. Arkharov I.A., Navasardyan E.S., Simakov M.V. Microcryogenic gas machines in strategic satellite navigation, surveillance, and communications systems. Chemical and Petroleum Engineering, 2016;51(11– 12):765–770 (in Eng.).
5. Fominskii M.Yu. Development and investigation of a cryogenic bolometer on cold electrons (Razrabotka i issledovanie kriogennogo bolometra na kholodnykh elektronakh): Ph.D. Dis. (physics and mathematics): 01.04.01 Institut radiotekhniki i elektroniki im. V.A. Kotel'nikova RAN. Moscow, 2011 (in Russ.).
6. Zmuidzinas J., Richards P.L. Superconducting detectors and mixers for millimeter and submillimeter astrophysics. Proceedings of the IEEE, 2004;92:1597– 1616 (in Eng.).
7. Wentworth S.M., Neikirk D.P. Transition-edge microbolometer. Kul B. Bhasin and Vernon O. Heinen [ed.]. Orlando, FL, USA: s.n., Proc. SPIE: Superconductivity Applications for Infrared and Microwave Devices, 1990;1292:148–154 (in Eng.).
8. Wentworth S.M., Neikirk D.P. Composite microbolometers with tellurium detector elements. IEEE Transactions on Microwave Theory and Techniques, 1992;40:196–201 (in Eng.).
9. Kuzmin L. Ultimate Cold-Electron Bolometer with Strong Electrothermal Feedback. SPIE Astronomical Telescopes and Instrumentation Conf. “Mm and Submm Detectors for Astronomy”. 2004;5498:349–361 (in Eng.).
10. Mazin B.A., Day P.K., Zmuidzinas J., Leduc H.G. Multiplexable kinetic inductance detectors [ed.] F.S. Porter, et al. Proc. 9th Int. Workshop Low temperature detectors. 2002;605:309–312 (in Eng.).
11. Neganov B.S., Borisov N.S., Liburg M.Yu. The method of obtaining ultra-low temperatures, based on the dissolution of 3He in 4He (Metod polucheniya sverkhnizkikh temperatur, osnovannyi na rastvorenii 3Ne v 4Ne). Preprint OIYaI R-2480, 1965; ZhETF 50 (1966) 1445 (in Russ.).
12. Borisov N.S., Matafonov V.N., Neganov A.B., Plis Yu.A., Schevelev O.N., Usov Yu.A., Jansky I., Rotter M., Sedlak B., Wilhelm I., Gurevich G.M., Lukhanin A.A., Jelinek J., Srnka A., Skrebek L. Target with a Frozen Nuclear Polarization for Experiments at Low Energies. Nucl. Instr. & Meth., 1994;A 345:421; in Proc. of the 11th Int. Symposium on High Energy Spin Physics, Bloomington, 1994, p. 545 (in Eng.).
13. Usov Yu.A. Development and creation of cryogenic installations for targets with frozen polarization of hydrogen nuclei and deuterium (Razrabotka i sozdanie kriogennykh ustanovok dlya mishenei s zamorozhennoi polyarizatsiei yader vodoroda i deiteriya): Ph.D. Dis. (engineering): 01.04.01; Ob"edinennyi institut yadernykh issledovanii. Laboratoriya yadernykh problem, Dubna, 2000 (in Russ.).
14. Koresheva E.R. Cryogenic Targets for Inertial Thermonuclear Fusion (Kriogennye misheni dlya inertsial'nogo termoyadernogo sinteza). D.Sc.Dis. (physics and mathematics): 01.04.07, 01.04.21; Fizicheskii institut im. P.N. Lebedeva RAN, Moscow, 2005 (in Russ.).
15. Aleksandrova I.V., Koresheva E.R., Koshelev I.E., Krokhin O.N., Nikitenko A.I., Osipov I.E. Cryogenic hydrogen fuel for controlled inertial fusion (the concept of a cryogenic target factory based on the FST method) (Kriogennoe vodorodnoe toplivo dlya upravlyaemogo inertsial'nogo termoyadernogo sinteza (kontseptsiya fabriki kriogennykh mishenei na osnove metoda FST). Voprosy atomnoi nauki i tekhniki. Seriya Termoyadernyi sintez, 2016;39(1):30–54 (in Russ.).
16. Aleksandrova I.V., Koresheva E.R., Krokhin O.N., Osipov I.E. Cryogenic hydrogen fuel for controlled inertial fusion (overview of world results) (Kriogennoe vodorodnoe toplivo dlya upravlyaemogo inertsial'nogo termoyadernogo sinteza (obzor mirovykh rezul'tatov). Voprosy atomnoi nauki i tekhniki. Seriya Termoyadernyi sintez, 2015;38(1):57–79 (in Russ.).
17. Aleksandrova I.V., Koresheva E.R., Krokhin O.N., Osipov I.E. Cryogenic hydrogen fuel for controlled inertial thermonuclear fusion (production of a stable ultradispersed layer of solid isotopes of hydrogen) (Kriogennoe vodorodnoe toplivo dlya upravlyaemogo inertsial'nogo termoyadernogo sinteza (poluchenie ustoichivogo ul'tradispersnogo sloya iz tverdykh izotopov vodoroda). Voprosy atomnoi nauki i tekhniki. Seriya Termoyadernyi sintez, 2015;38(2):75–103 (in Russ.).
18. Aleksandrova I.V., Koresheva E.R., Krokhin O.N., Osipov I.E. Kriogennoe vodorodnoe toplivo dlya upravlyaemogo inertsial'nogo termoyadernogo sinteza (FST-formirovanie kriogennogo sloya topliva v dvizhushcheisya bespodvesnoi obolochke: teoriya i eksperiment). Voprosy atomnoi nauki i tekhniki. Seriya Termoyadernyi sintez, 2015;38(3):59–82 (in Russ.).
19. Aleksandrova I.V., Koresheva E.R., Krokhin O.N., Osipov I.E. Cryogenic hydrogen fuel for controlled inertial thermonuclear fusion (formation of cryogenic targets of the reactor class) (Kriogennoe vodorodnoe toplivo dlya upravlyaemogo inertsial'nogo termoyadernogo sinteza (formirovanie kriogennykh mishenei reaktornogo klassa). Voprosy atomnoi nauki i tekhniki. Seriya Termoyadernyi sintez, 2015;38(4):51– 78 (in Russ.).
20. Rajauria S. Electronic refrigeration using superconducting tunnel junctions. PhD thesis, University Joseph Fourier, 2008 (in Eng.).
21. Clarck A.M., Miller N.A., Williams A., Ruggiero S.T., Hilton G.C., Vale L.R, Beall J.A., Irwin K.D., Ullom J.N. Cooling of bulk material by electrontunneling refrigerators. Applied Physics Letters, 2005;86(17):173508 (in Eng.).
22. Kuzmin L. An Array of Cold-Electron Bolometers with SIN Junctions and JFET readout for Cosmology Instruments. J. Phys., Conf. Ser., 2008;97(1):012310 (in Eng.).
23. Andreev A.F. The thermal conductivity of the intermediate state in superconductors. Journal of Experimental and Theoretic Physics, 1964;46:1823–1828 (in Eng.).
24. Wilhelm I., Murali P., Dolezal Z. Production of monoenergetic neutrons from the T(d, n) α reaction with the associated particle method. Nucl. Instr. & Meth., 1992;A 317(3):553–558 (in Eng.).
25. Broz, J. Černý J., Doležal Z., Gurevich G.M., Kubík P., Lukhanin A.A., Lukhanin G.A., Švejda J., Wilhelm I., Borisov N.S., Kuzmin E.S., Matafonov V.N., Neganov A.B., Pisarev I.L., Plis Yu.A., Usov Yu.A. Z. Phys. 1996;A 354:401; in Proc. 12th International Symposium on High Energy Spin Physics, Amsterdam, Netherlands, 1996, p. 280 (in Eng.).
26. Schoberl M., Kuiper H., Schmelzer R., Mertens G., Tornow W. Measurement of the neutron-proton spin correlation coefficient Ayy at 90° c.m. by elastic scattering of 13.7 MeV polarized neutrons from a polarized proton target. Nucl. Phys. A 489 (1988) 284–302 (in Eng.).
27. Ockenfels M., Köble T., Schwindt M., Weltz J., Von Witsch W. Measurement of the neutron-proton polarization transfer coefficient y' K y at 17.4 MeV. Nucl. Phys. 1991;A 526:109 (in Eng.).
Review
For citations:
Titov A.Yu., Arkharov I.A., Ivanov B.A., Arkharov A.M., Navasardyan E.S. ABOUT THE CALCULATION OF THE NIS MATRIX'S MICRO COOLER FOR TARGETS WITH FROZEN NUCLEAR POLARIZATION OF HYDROGEN AND DEUTERIUM IN PARTICLE ACCELERATORS. Alternative Energy and Ecology (ISJAEE). 2017;(25-27):35-44. (In Russ.) https://doi.org/10.15518/isjaee.2017.25-27.035-044