

CORROSION RESISTANT ELECTRODES / CURRENT COLLECTORS FOR ANODES OF ELECTROLYSIS CELLS WITH SOLID POLYMER ELECTROLYTE
https://doi.org/10.15518/isjaee.2017.25-27.088-099
Abstract
The paper deals with the corrosion resistant electrodes production by the environmentally friendly magnetron sputtering for use in the acid electrochemical systems with solid polymer electrolyte, in particular, fuel cells, electrolyzers, and oxygen pumps. A technique was found for obtaining electrodes with electrochemical stability that was close to the stability of platinum, but with a sharply reduced content, which would reduce the cost of the corresponding installation. As the basis for the electrodes, titanium was chosen. Both smooth titanium foil and porous titanium were used. Applied coatings consisted of palladium, platinum or platinum with carbon. The coatings thickness and microstructure were tested using Rutherford backscattering and electron microscopy. The stability tests were carried out in 1 M sulphuric acid at 25oC and current density of 50 mA/cm2 . The application of these coatings is shown to increase sharply the stability of electrodes and current collectors of titanium foils and porous titanium. The coatings obtained at a direct current sputtering and a negative bias voltage on the titanium substrate have the most dense structure and high stability. In the pulsed mode, the stability was worse and decreased with increasing pulse frequency when obtaining a more porous structure. Comparison of the coatings with different compositions shows that stability of the coating with platinum is higher than stability of the coating with palladium and platinum with carbon. The resulting materials are expected to be used in fuel cells and electrochemical oxygen pumps.
About the Authors
V. N. FateevRussian Federation
O. K. Alekseeva
Russian Federation
V. I. Porembskiy
Russian Federation
A. I. Mikhalev
Russian Federation
S. M. Nikitin
Russian Federation
References
1. Eladeb B. Electrochemical extraction of oxygen using PEM electrolysis technologies technologies. J. Electrochem. Sci. Eng., 2012;2(4):211−221.
2. Discovery research group, The volume of the oxygen market in Russia in 2016 amounted to 17,288.3 thousand tons, which is equivalent to $ 2,373.2 million (Ob"em rynka kisloroda v Rossii v 2016 g. sostavil 17 288,3 tys. t, chto ekvivalentno $2 373,2 mln) Available on: https://marketing.rbc.ru/articles/9925/ (in Russ.).
3. GRASYS Production. Oxygen plants and stations (GRASIS Produktsiya. Kislorodnye ustanovki i stantsii) Available on: http://www.grasys.ru/products/gas/kislorodnye-ustanovki/ (in Russ.).
4. Voloshchenko G.N. Electrochemical module for solid electrolyte oxygen pump (Elektrokhimicheskii modul' dlya tverdoelektrolitnogo kislorodnogo nasosa) Patent RU 133653 U1 H01M8/00 H01M8/12 20.10.2013 (in Russ.).
5. Grigoriev S.A. , Millet P., Fateev V.N. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. Journal of Power Sources, 2008;177(2):281–285.
6. Voloshchenko G.N. Computer program: Model of the atmosphere conditioning system of the mobile device (Programma dlya EVM: Model' sistemy konditsionirovaniya atmosfery mobil'nogo apparata). Patent RU 2016613524 20.04.2016 (in Russ.).
7. Carolan M.F., Dyer P.N., E. Minford, Russek S. L., Wilson M. A., Taylor D. M., Henderson B.T. Series planar construction for solid electrolyte oxygen pump. Patent EP 0682379 USA, IPC1-7 B01D53/32; C25B1/02; C25B9/00; C25B9/06; C25B9/08; C25B9/18; G01N27/41; G01N27/419; H01M8/02; H01M8/06; H01M8/12; H01M8/24; заявитель и патентообладатель Air products and chemicals, inc – № 19950106935; опубл. 15.11.95. Бюл. № 95/46.
8. Grigoriev S.A., I. Baranov, P. Millet, Z. Li, V. Fateev. Optimization of porous current collectors for PEM water electrolysers. International journal of hydrogen energy, 2009;34:4968−4973.
9. Grigoriev S.A., Kalinnikov A.A. Mathematical modeling and experimental study of the performance of PEM water electrolysis cell with different loadings of platinum metals in electrocatalytic layers. International journal of hydrogen energy, 2017;42:1590−1597.
10. Huth A., Schaar B., Oekermann T. A proton pump concept for the investigation of proton transport and anode kinetics in proton exchange membrane fuel cells. Electrochim Acta, 2009;54:P.2774–2780.
11. Barbir F., Görgün H. Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack. Journal of Applied Electrochemistry, 2007;37(3):359–365.
12. Sarakinos K., Alami J., Konstantinidis S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surface & Coatings Technology, 2010;204:1661–1684.
13. Xie L., Brault P., Bauchire J.-M., Thomann A.-L., Bedra L. Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J. Phys. D: Appl. Phys., 2014;47:224004.
14. Kelly P.J., Arnell R.D. Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000;56:159–172.
15. Radev I., Topalov G., Lefterova E.D., Slavcheva E. Optimization of platinum/iridium ratio in thin sputtered films for PEMFC cathodes. Int. J. Hydrogen Energy, 2012;37:7730–7735.
16. Hirano S., Kim J., Srinivasan S. High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochim. Acta, 1997;42:1587–1593.
17. Kim H.-T., Lee J.-K., Kim J. Platinumsputtered electrode based on blend of carbon nanotubes and carbon black for polymer electrolyte fuel cell. J. of Power Sources, 2008;180:191–194.
18. Fedotov A.A., Grigoriev S.A., Millet P., Fateev V.N. Plasma-assisted Pt and Pt-Pd nanoparticles deposition on carbon carriers for application in PEM electrochemical cells. Int. J. Hydrogen Energy, 2013;38:8568–8574.
19. Fedotov A.A., Grigoriev S.A., Lyutikova E.K., Millet P., Fateev V.N. Characterization of carbonsupported platinum nano-particles synthesized using magnetron sputtering for application in PEM electrochemical systems. Int. J. Hydrogen Energy, 2013;38:426–430.
20. Fedotov A.A. The method of synthesis of nanostructured electrocatalysts, based on magnetron-ion sputtering (Metod sinteza nanostrukturnykh elektrokatalizatorov, osnovannyi na magnetronno-ionnom raspylenii). Kinetika i kataliz, 2012;53:803–809 (in Russ.).
21. Alexeeva O.K., Fateev V.N. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis. Int. J. Hydrogen Energy, 2016;41:3373–3386.
22. Alexeeva O., Chistov A., Sumarokov V. Preparation of hydride-forming intermetallic films. Int. J. Hydrogen Energy, 1995;20:397–399.
23. Alexeeva O.K., Chistov A., Sumarokov V.Interaction of magnetron sputtered PrNi5 films with hydrogen. Int. J. Hydrogen Energy, 1996;21:1001–1003.
24. Alexeeva O.K., Shapir B.L., Sumarokov V.N., Vinogradova E.A. Interaction of hydrogen sulfide with Ni-Al protective coatings prepared by vacuum deposition. Int. J. Hydrogen Energy, 1999;24:235–239.
25. Alexeeva O.K. Creation of hydrogen–selective tubular composite membranes based on Pd-alloys: I. Improvement of ceramic support with Ni layer deposition. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, T.N. Veziroglu et al. (eds.), New York, Springer, 2007, pp. 95–103.
26. Alekseeva O.K. Characteristics of the deposited tape catalyst with an active layer of Raney nickel (Kharakteristiki nanesennogo lentochnogo katalizatora s aktivnym sloem nikelya Reneya. Kinetika i kataliz, 1987;28:240–243 (in Russ.).
27. Alexeeva О.K. Modified hydrogen sulfide adsorbents-catalysts. Int. J. Hydrogen Energy, 1994;19:693–696.
28. Giannuzzi L.A., Stevie F.A. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer Press. 2005.
29. Shemukhin A.A., Muratova E.N. Investigation of transmission of 1.7-MeV He+ beams through porous alumina membranes. Technical Physics Letters, 2014;40(3):219−221.
30. Shemukhin A.A., Nazarov A.V., Balakshin Yu.V., Chernysh V.S. Defect formation and recrystallization in the silicon on sapphire films under Si+ irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B, 2015;354:274−276.
Review
For citations:
Fateev V.N., Alekseeva O.K., Porembskiy V.I., Mikhalev A.I., Nikitin S.M. CORROSION RESISTANT ELECTRODES / CURRENT COLLECTORS FOR ANODES OF ELECTROLYSIS CELLS WITH SOLID POLYMER ELECTROLYTE. Alternative Energy and Ecology (ISJAEE). 2017;(25-27):88-99. (In Russ.) https://doi.org/10.15518/isjaee.2017.25-27.088-099