Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

EXPERIMENTAL EVALUATION OF TOTAL HYDROGEN CAPACITY FOR FULLERITE C60

https://doi.org/10.15518/isjaee.2017.22-24.047-062

Abstract

The fullerene is the fourth allotropic modification of carbon and its properties, as volume, gravimetric and electrochemical capacities, are in excess of many similar properties of metal hydrides and hydrocarbons. The solution of the problem of the reversible hydrogenation of each carbon atom in the frame of fullerene molecule will allow to create the hydrogen storage with the capacity up to 7.7 wt.% H. A series of experiments have been conducted to evaluate the full hydrogenation of fullerite C60; hydrofullerenes have been produced experimentally with the variable content of hydrogen. The optimum regime of C60 hydrogenation has been determined resulting in the full hydrogenation of fullerene molecule C60. As was apparent after the tests, the sequence of formation of hydrogenated fullerene molecule C60H60 in fullerite has been going in the following order: the molecular hydrogen dissolution in octahedral interstices of fcc lattice of fullerite, the dissociation of hydrogen molecules in going from octa- to tetrahedral interstices, the interaction of hydrogen atoms with fullerene molecule. It has been demonstrated that chemisorption process of hydrogen by molecule C60 is limited by diffusive processes in fullerite after hydrogen concentration conformed to C60H36. The spectral analysis has shown that the second stage process of chemisorption follows the compressive shell model. The suggestion of the model of processes going on at the interaction between H2 and fullerite C60 has been made. The mechanism for the definition of hydrogenation degree of molecule C60 has been proposed in the present paper.

 

About the Authors

D. V. Schur
Institute for Problems of Materials Science of NAS of Ukraine
Ukraine
Ph.D. (chemistry), Professor, Chief of Laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev


S. Yu. Zaginaichenko
Institute for Problems of Materials Science of NAS of Ukraine
Ukraine
D.Sc. (physics and mathematics), Professor, Senior Researcher at Laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev


A. F. Savenko
Institute for Problems of Materials Science of NAS of Ukraine
Ukraine


V. A. Bogolepov
Institute for Problems of Materials Science of NAS of Ukraine
Ukraine


N S. Anikina
Institute for Problems of Materials Science of NAS of Ukraine
Ukraine


A. D. Zolotarenko
Institute for Problems of Materials Science of NAS of Ukraine
Ukraine


Z. A. Matysina
Dnepropetrovsk National University
Ukraine
D.Sc. (physics and mathematics), Professor, Senior Researcher at Laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev; Professor at Oles Honchar Dnepropetrovsk National University; Honored Professor of Dnepropetrovsk National University


T. N. Veziroglu
International Association for Hydrogen Energy
United States
Ph.D. in Heat Transfer, Professor, President of International Association for Hydrogen Energy


N. E. Skryabina
Perm State University
Russian Federation


References

1. [1] Schur D.V., Tarasov B.P., Shul’ga Y.M., Zaginaichenko S.Yu., Matysina Z.A., Pomytkin A.P. Hydrogen in fullerites. Carbon, 2003;41:1331–1342.

2. [2] Jin C., Hettich R., Compton R., Joyce D., Blencoe J., Burch T. Direct solid-phase hydrogenation of fuller-enes. J. Phys. Chem., 1994;98(16):4215–4217.

3. [3] Lobach A.S., Tarasov B.P., Shul'ga Yu.M., Perov A.A., Stepanov A.N. The D2 reaction with palladium fulleride C60Pd4,9. Izv. RAN., Ser. khim. 1996:483–484.

4. [4] Shigematsu K., Abe K., Mitani M., Tanaka K. Catalytic hydrogenation of fullerene C60. Chem. Express., 1992; 7(12):37–40.

5. [5] Attalla M.I., Vassallo A.M., Tattam B.N., Hanna J.V. Preparation of hydrofullerenes by hydrogen radical induced hydrogenation. J. Phys. Chem., 1993;97:6329–6331.

6. [6] Haufler L.E. Conceicao J., Chibante L.P.F., Chai Y., Byrne N.E. Flanagan S. et. al. Reduction with tithium in ammonia in the presence of t-BuOH. J. Phys. Chem., 1990;94(24):8634–8636.

7. [7] Henderson C.C., Cahill P.A. Synthesis of the simplest С60 hydrocarbon derivative. Science, 1993;259:1885–1887.

8. [8] Bashkin I.O., Antonov V.E., Kolesnikov A.I., Ponyatovsky E.G., Mayers J., Parker S.F., Tomkinson J., Moravsky A.P., Shul'ga Yu.M. Hydrogen in the vibrational spectra of high-pressure hydrofullerite. Molecular Materials 2000;13(1–4):251–256.

9. [9] Gerst M., Beckhaus H.-D., Ruchardt C., Campbell E.E.B., Tellgmann R. Benzanthrone, a catalyst for the transfer hydrogenation of C60 and C70 by 9, 10-dihydroanthracene. Tetrahedron Lett., 1993; 34:7729–7732.

10. [10] Darwish A.D.M., Taylor R., Loutfy R. In: Proc. of 197th Meeting of Electrochemical Society, Toronto, 2000, Abstract, No 693.

11. [11] Nozu R., Matsumoto O. Electrochemical hydrogenation of fullerenes in a 30 % KOH solution. J. Electrochem. Soc., 1996;143(6):1919–1923.

12. [12] Tarasov B.P., Fokin V.N., Moravsky A.P., Shul'ga Yu.M. Hydrogenation of fullerite in the presence of intermetallic compounds (Gidrirovanie fullerita v prisutstvii gidridov metallov). Izv. RAN., Ser. khim., 1997;4:679–683 (in Russ.).

13. [13] Tarasov B.P., Fokin V.N., Moravsky A.P., Shul’ga Yu.M., Yartys’ V.A. Hydrogenation of fuller-enes C-60 and C-70 in the presence of hydride-forming metals and intermetallic compounds. J. Alloys and Comp., 1997;25:253–254.

14. [14] Tarasov B.P. Mechanism of hydrogenation of fullerite-metallic compositions (Mekhanizm gidrirovaniya fullerit metallicheskikh kompozitsii). Zhurn obshchei khimii, 1998;68:1245–1248 (in Russ.).

15. [15] Tarasov B.P., Fokin V.N., Moravsky A.P., Shul’ga Yu.M., Yartys’ V.A., Schur D.V. Promotion of fullerene hydride synthesis by intermetallic compounds. Proc. of 12th World Hydrogen Energy Conference, Bue-nos Aires, Argentina, 1998;2:1221–1230.

16. [16] Goldshleger N.F., Tarasov B.P., Shul’ga Yu.M., Perov A.A., Roschupkina O.S., Moravsky A.P. Vzaimodeistvie fullerida platiny C60Pt s deiteriem (Vzaimodeistvie fullerida platiny CeoPt s deiteriem). Izv. RAN, Ser. khim., 1999;5:999–1002 (in Russ.).

17. [17] Goldshleger N.F., Tarasov B.P., Shul'ga Yu.M., Roschupkina O.S., Perov A.A., Moravsky A.P. In Full-erenes, Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials. Eds. Kadish K.M., Kamat P.V., Guldi D., vol. 7, Pennington, NJ: The Electrochemical Society, 1999:647.

18. [18] Matysina ZA, Schur DV Hydrogen and solid-phase transformations in metals, alloys and fullerites (Vodorod i tverdofaznye prevrashcheniya v metallakh, splavakh i fulleritakh): Monograph. Dnepropetrovsk: “Science and Education” Publ., 2002, 420 p. (in Russ.).

19. [19] Schur D.V., Zaginaichenko S.Yu., Veziroglu T.N. The peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. International Journal of Hydrogen Energy, 2008;33(13):3330–3345.

20. [20] Bashkin I.O., Antonov V.E., Bazhenov A.V., Bdikin I.C., Borisenko D.N., Krinichnaya E.P., Moravsky A.P., Kharkunov A.I., Shulga Y.M., Osipyan Y.A., Ponyatovsky E.G. Thermo-stable hydrogen compounds based on carbon nanotubes and nanofibres obtained under high pressure (Termostabil'nye soedineniya vodoroda na baze uglerodnykh nanotrubok i nanovolokon, poluchennye pod vysokim davleniem). Pis'ma v ZhETF, 2004;79(5):280–285 (in Russ.).

21. [21] Bashkin I.O., Antonov V.E., Bazhenov A.V., Bdikin I.K., Borisenko D.N., Krinichnaya E.P., Moravsky A.P., Ossipyan Yu.A., Ponyatovsky E.G., Fursova T.N., Harkunov A.I., Shulga Yu.M. Carbon materials hydrogenated under high pressure. Proc. of 8th International Conference “Hydrogen Materials Science and Chemistry of Carbon Nanomaterials”, Sudak, Crimea, Ukraine, September 14–20, 2003, p. 796–799.

22. [22] Bashkin I.O., Antonov V.E., Bazhenov A.V., Fursova T.N., Lukashev R.V., Sakharov M.K., Shulga Yu.M., Zavaritskaya V.A. High-pressure hydrogenation of graphite. Proc. of 10th International Conference “Hydrogen Materials Science and Chemistry of Carbon Nanomaterials”, Sudak, Crimea, Ukraine, September 22–28, 2007, p. 686–689.

23. [23] Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Schur D.V., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. Proc. of NATO ARW on HMSCCN, Sevastopol; 2005, pp. 365– 382 (Published by Springer, The Netherlands, 2007)

24. [24] Schur D.V., Matysina Z.A. , Zaginaichenko S.Yu. Carbon nanomaterials and phase transformations in them (Uglerodnye nanomaterialy i fazovye prevrashcheniya v nikh). Dnepropetrovsk: “Science and Education” Publ., 2007, 680 p.


Review

For citations:


Schur D.V., Zaginaichenko S.Yu., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. EXPERIMENTAL EVALUATION OF TOTAL HYDROGEN CAPACITY FOR FULLERITE C60. Alternative Energy and Ecology (ISJAEE). 2017;(22-24):47-62. (In Russ.) https://doi.org/10.15518/isjaee.2017.22-24.047-062

Views: 687


ISSN 1608-8298 (Print)