Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

TOWARDS SUSTAINABLE ENERGY: GENERATION OF HYDROGEN FUEL USING NUCLEAR ENERGY

https://doi.org/10.15518/isjaee.2017.22-24.063-082

Abstract

The increasing demand for sustainable energy results in the development of new technologies of energy generation. The key objective of hydrogen economy is the introduction of hydrogen as main energy carrier, along with electricity, on a global scale. The key goal is the development of hydrogen-related technologies needed for hydrogen generation, hydrogen storage, hydrogen transportation and hydrogen distribution as well as hydrogen safety systems. It is commonly believed that hydrogen is environmentally clean since its combustion results in the formation of water. However, the technology currently employed for the generation of hydrogen from natural gas, does in fact lead to the emission of greenhouse gases and climate change. Therefore, the key issues in the introduction of hydrogen economy involve the development of environmentally clean hydrogen production technology as well as storage and transport. The clean options available for hydrogen generation using nuclear energy; such as advanced nuclear fission and, ultimately, nuclear fusion, are discussed. The latter, which is environmentally clean, is expected to be the primary approach in the production of hydrogen fuel at the global scale. The present work considers the effect of hydrogen on properties of TiO2 and its solid solutions in the contexts of photocatalytic energy conversion and the effect of tritium on advanced tritium breeders.

 

About the Authors

Ja. Nowotny
Solar Energy Technologies, Western Sydney University
Australia
the Member of the Polish Academy of Art and Sciences (2009– present) and Fellow of the Institute of Materials, Minerals and Mining (2015–present)


T. Hoshino
Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Institute, Sector of Fusion Research and Development
Japan


J. Dodson
Institute of Earth Environment, Chinese Academy of Sciences
China
Ph.D., a Professor in the Institute of Earth Environments of Chinese Academy of Sciences (Xi’an, China) and holds honorary professorships at universities of NSW and Wollongong; a leader a small group of dedicated scientists and technicians in Xi’an


A. J. Atanacio
Australian Nuclear Science and Technology Organisation
Australia


M. Ionescu
Australian Nuclear Science and Technology Organisation
Australia


V. Peterson
Australian Nuclear Science and Technology Organisation
Australia


K. E. Prince
Australian Nuclear Science and Technology Organisation
Australia


M. Yamawak
Research Institute of Nuclear Engineering, University of Fukui
Japan


T. Bak
Solar Energy Technologies, Western Sydney University
Australia


W. Sigmund
University of Florida
United States
Department of Materials Science and Engineering


T. N. Veziroglu
International Association of Hydrogen Energy
United States
Ph.D. in Heat Transfer, Professor, President of International Association for Hydrogen Energy


M. A. Alim
Solar Energy Technologies, Western Sydney University
Australia


References

1. Veziroglu T.N., Şahi S. 21st Century's energy: hydrogen energy system. Energy. Convers. Manag., 2008;49:1820–31.

2. Neftel A., Moor E., Oeschger H., Stauffer B. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature, 1985;315:45–7.

3. Keeling C.D., Bacastow R.B., Carter A., Piper S.C., Whorf T.P., Heimann M., et al. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. Aspects Clim. Var. Pac. West. Am., 1989:165–236.

4. Russ P. Cost-effective strategies for an optimal intertemporal allocation of carbon dioxide emission reduction measures. Aachen: Verlag Shaker; 1994.

5. Friedli H., Lotscher H., Oeschger H., Siegenthaler U., Stauffer B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 1986;324:237–8.

6. www.noaa.gov; May, 2014.

7. Veziroglu T., Gurkan I., Padki M. Remediation of greenhouse problem through replacement of fossil fuels by hydrogen. Int. J. Hydrogen Energy, 1989;14:257–66.

8. DOE hydrogen and fuel cell program: www.hydrogen.gov/h2a_prod_studies.html.

9. Schoots K., Ferioli F., Kramer G.J., Van der Zwaan B. Learning curves for hydrogen production technology: an assessment of observed cost reductions. Int. J. Hydrogen Energy, 2008;33:2630–45.

10. J O’M Bockris, private information to J. Nowotny, June 6, 2002.

11. Nowotny J., Veziroglu T.N. Impact of hydrogen on the environment. Int. J. Hydrogen Energy, 2011;36:13218–24.

12. Nowotny J., Bak T., Chu D., Fiechter S., Murch G.E., Veziroglu T.N. Sustainable practices: solar hydrogen fuel and education program on sustainable energy systems. Int. J. Hydrogen Energy, 2014;39:4151–7.

13. Bockris J., Veziroglu T., Smith D. Solar hydrogen energy, the power to save the earth. London: Mac-Donald & Co, Ltd.;1991.

14. Claussen E., Cochran V.A., Davis D.P. Climate change: science, strategies, & solutions. Brill; 2001.

15. Future Earth, Interim Secretariat. Paris: International Council for Science (ICSU); 2013.

16. Rodriguez C., Baxter A., McEachern D., Fikani M., Veneri F. Deep-Burn making nuclear waste transmutation practical. Nucl. Eng. Des., 2003;222:299–317.

17. Cunningham N., MacDonald T. www.AmericanSecurityProject.org; April 2013.

18. Lawson J.D. Some criteria for a power producing thermonuclear reactor. In: Proceedings of the physical society. Section B, 1957; 70:6.

19. Powell J.R., Miles F., Aronson A., Winsche W. Studies of fusion reactor blankets with minimum radioactive inventory and with tritium breeding in solid lithium compounds: a preliminary report. Technical Report No BNL-18236. Upton, NY (USA): Brookhaven National Lab.; 1973.

20. Suiter D. Lithium-based oxide ceramics for tritium-breeding applications. Technical Report No MDC-E-2677. St. Louis, MO (USA): McDonnell Douglas Astronautics Co.; 1983.

21. Kudo H., Okuno K., O'hira S. Tritium release behavior of ceramic breeder candidates for fusion reactors. J. Nucl. Mater., 1988;155:524–8.

22. Roux N., Johnson C., Noda K. Properties and performance of tritium breeding ceramics. J. Nucl. Mater., 1992;191:15–22.

23. Roux N., Avon J., Floreancing A., Mougin J., Rasneur B., Ravel S. Low-temperature tritium releasing ceramics as potential materials for the ITER breeding blanket. J. Nucl. Mater., 1996;233:1431–5.

24. Matsuda S. The EU/JA broader approach activities. Fusion. Eng. Des., 2007;82:435–42.

25. Hoshino T., Tsuchiya K., Hayashi K., Nakamura M., Terunuma H., Tatenuma K. Preliminary test for reprocessing technology development of tritium breeders. J. Nucl. Mater., 2009;386:1107–10.

26. Hoshino T, Nakamichi M. Development of fabrication technologies for advanced breeding functional materials for DEMO reactors. Fusion. Eng. Des., 2012;87:486–92.

27. Hoshino T., Dokiya M., Terai T., Takahashi Y., Yamawaki M. Non-stoichiometry and its effect on thermal properties of Li2TiO3. Fusion. Eng. Des., 2002;61:353–60.

28. Hoshino T., Ochiai K., Edao Y., Kawamura Y. Evaluation of tritium release properties of advanced tritium breeders. Fusion. Sci. Technol., 2015;67:146–9.

29. Sorbom B.N., Ball J., Palmer T.R., Mangiarotti F.J., Sierchio J.M., Bonoli P., et al. ARC: a compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion. Eng. Des., 2015;100:378–405. http://dx.doi.org/10.1016/j.fusengdes.2015.07.008.

30. Krüger F.A., Vink H.J. Reactions between imperfections in crystalline solids. In: State Physics Solid, Seitz F., D. Turbull, editors. NY: Academic Press; 1956, p. 273–301.

31. Nowotny J., Atanacio A., Bak T., Belova I., Fiechter S., Ikuma Y., et al. Photosensitive oxide semiconductors for solar hydrogen fuel and water disinfection. Int. Mater. Rev., 2014;59:449–78.

32. Bak T., Nowotny J., Sucher N.J., Wachsman E. Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (Rutile) with oxygen, water, and bacteria. J. Phys. Chem. C, 2011;115:15711–38.

33. Kofstad P. Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. New York: Wiley-Interscience; 1972.

34. Norby T. Proton conduction in solids: bulk and interfaces. MRS Bull., 2009;34:923–8.

35. Hill G. The effect of hydrogen on the electrical properties of rutile. J. Phys. D. Appl. Phys., 1968;1:1151.

36. Chester P.F., Bradhurst D.H. Electrolytically induced conductivity in rutile. Nature, 1963;199:1056–7.

37. Hanzu I, Djenizian T, Knauth P. Electrical and point defect properties of TiO2 nanotubes fabricated by electrochemical anodization. J. Phys. Chem. C, 2011;115:5989–96.

38. Gierszewski P. Review of properties of lithium metatitanate. Fusion. Eng. Des., 1998;39:739–43.

39. Kleykamp H. Phase equilibria in the LieTieO system and physical properties of Li2TiO3. Fusion Eng. Des., 2002;61:361–6.

40. Murphy S.T., Zeller P., Chartier A., Van Brutzel L. Atomistic simulation of the structural, thermodynamic, and elastic properties of Li2TiO3. J. Phys. Chem. C., 2011;115:21874–81.

41. Wan Z.,Yu Y., Zhang H.F., Gao T., Chen X.J., Xiao C.J. First-principles study of electronic, dynamical and thermodynamic properties of Li2TiO3. Eur.

42. Phys. J. B, 2012;85:1–7.

43. Kobayashi M., Oya Y., Okuno K. Migration of hydrogen isotopes in lithium metatitanate. J. Nucl. Mater., 2013;439:159–67.

44. Vtiņs G.‚ Ķizāne G., Lūsis A., Tliks J. Electrical conductivity studies in the system Li2TiO3-Li1. 33Ti1.67O4. J. Solid State Electrochem., 2002;6:311–9.

45. Murphy S.T. Tritium solubility in Li2TiO3 from first-principles simulations. J. Phys. Chem. C, 2014;118:29525–32.

46. Murphy S.T., Hine N.D. Point defects and non-stoichiometry in Li2TiO3. Chem. Mater., 2014;26:1629–38.

47. Padilla-Campos L. A theoretical investigation of occupation sites for tritium atoms in lithium titanate. J. Mol. Struct. Theochem., 2003;621:107–12.

48. Wu X., Wen Z., Xu X., Han J. Synthesis and ionic conductivity of Mg-doped Li2TiO3. Solid State Ionics, 2008;179:1779–82.

49. Wu X., Wen Z., Wang X., Xu X., Lin J., Song S. Effect of Ta-doping on the ionic conductivity of lithium titanate. Fusion Eng. Des., 2010;85:1442–5.

50. Kobayashi M., Toda K., Oya Y., Okuno K. Dependency of irradiation damage density on tritium migration behaviors in Li2TiO3. J. Nucl. Mater., 2014;447:1–8.

51. Cathcart J., Perkins R., Bates J., Manley L. Tritium diffusion in rutile (TiO2). J. Appl. Phys., 1979;50:4110–9.

52. Peterson V.K., Kearley G.J. Neutron applications in materials for energy: an overview, in neutron applications in materials for energy. Springer; 2015. p. 1–9.

53. Mamontov E., Vlcek L., Wesolowski D.J., Cummings P.T., Wang W., Anovitz L., et al. Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations. J. Phys. Chem. C, 2007;111:4328–41.

54. Brown C.M., Liu Y., Yildirim T., Peterson V.K., Kepert C.J. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study. Nanotechnology, 2009;20:204025.

55. Sherif S.A., Goswami D.Y., Stefanakos E.L., Steinfeld A. Handbook of hydrogen energy. CRC Press; 2014.

56. Mori. Nuclear production of hydrogen. Publ. by the La Grange, IL: American Nuclear Society; 2005.


Review

For citations:


Nowotny J., Hoshino T., Dodson J., Atanacio A.J., Ionescu M., Peterson V., Prince K.E., Yamawak M., Bak T., Sigmund W., Veziroglu T.N., Alim M.A. TOWARDS SUSTAINABLE ENERGY: GENERATION OF HYDROGEN FUEL USING NUCLEAR ENERGY. Alternative Energy and Ecology (ISJAEE). 2017;(22-24):63-82. (In Russ.) https://doi.org/10.15518/isjaee.2017.22-24.063-082

Views: 672


ISSN 1608-8298 (Print)