

ДОСТИЖЕНИЯ В ОБЛАСТИ ПОЛУЧЕНИЯ ВОДОРОДА БИОЛОГИЧЕСКИМ ПУТЕМ
https://doi.org/10.15518/isjaee.2017.22-24.083-098
Аннотация
Технология биологического получения водорода предлагает метод использования возобновляемых источников энергии, таких как биомасса, в производстве экологически чистых энергоносителей для всеобщего применения. Эти методы стали предметом обширных исследований по водородной тематике, среди которых: создание генетически модифицированного микроорганизма, метаболическая инженерия, усовершенствование конструкции реактора, применение сплошных матриц для иммобилизации целых клеток, биореактор для проведения биохимических процессов, разработка двухэтапных процессов и т.д. – в целях повышения производительности. По некоторым оценкам, максимальный выход водорода составляет 7,1 моль H2/моль глюкозы. Тем не менее невысокий выход водорода наряду с низкой скоростью производства являются основными препятствиями для коммерциализации этих процессов. Для эффективной обработки отходов, как правило, сложных по своей природе, требуются соответствующие микробные культуры, что может иметь двойное назначение: производство чистой энергии и биоремедиация. Масштабные исследования ферментативных способов получения водорода показали хорошие результаты. Изучение процесса фотоферментации на опытных установках требуют, по мнению авторов, более пристального внимания. Использование более дешевого сырья и эффективных методов биотехнологического получения водорода позволит в ближайшем будущем конкурировать этим технологиям с традиционными способами получения H2.
Об авторах
Д. ДасИндия
кафедра биотехнологии, д-р наук (биоэнергетика), профессор, старший преподаватель
Т. Н. Везироглу
Соединённые Штаты Америки
д-р наук (теплообмен), про- фессор, президент Международной ассоциации водородной энергетики
Список литературы
1. Momirlan M., Veziroglu T.N. Current status of hydrogen energy. Renew. Sustain. Energy. Rev., 2002;6:141–79.
2. Suzuki Y. On hydrogen as fuel gas. Int. J. Hydrogen. Energy, 1982;7:227–30.
3. Nath K., Das D. Hydrogen from biomass. Curr. Sci., 2003;85:265–71.
4. Das D., Veziroglu T.N. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy, 2001; 26:13–28.
5. Nandi R., Sengupta S. Microbial production of hydrogen: an overview. Crit. Rev. Microbiol., 1998;24:61–84.
6. Winkler M., Hemsehemeier A., Gotor C., Melis A., Happe T. [Fe]-hydrogenase in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int. J. Hydrogen Energy, 2002;27:1431–9.
7. Levin D.B., Pitt L., Love M. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy, 2004;29:173–85.
8. Pinto F.A.L., Troshina O., Lindblad P. A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrogen Energy, 2002;27:1209–15.
9. Liu J., Bukutin V.E., Tsygankov A.A. Light energy conversion into H2 by Anabaena variables mutant PK84 dense culture exposed in nitrogen limitations. Int. J. Hydrogen Energy, 2006;31:1591–6.
10. Bolton J.R. Solar photoproduction of hydrogen. Sol. Energy, 1996;57:37–50.
11. Fedorov A.S., Tsygankov A.A., Rao K.K., Hall D.O. Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnol. Lett., 1998;20:1007–9.
12. Tsygankov A.A., Hirata Y., Miyake M., Asada Y., Miyake J. Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J. Ferment. Bioeng., 1994;77:575–8.
13. Zurrer H., Bachofen R. Hydrogen production by the photosynthetic bacterium, Rhodospirillum rubrum. Appl. Environ. Microbiol., 1979;37:789–93.
14. Fascetti E., Todini O. Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Appl. Microbiol. Biotechnol., 1995;22:300–5.
15. Francou N., Vignais P.M. Hydrogen production by Rhodopseudomonas capsulata cells entrapped in car-rageenan beads. Biotechnol. Lett., 1984;6:639–44.
16. Vincenzini M., Materassi R., Sili C., Florenzano G. Hydrogen production by immobilized cells III: prolonged and stable H2 photoevolution by Rhodopseudomonas palaustris in light-darkcycles. Int. J. Hydrogen Energy, 1986;11:623–6.
17. Nath K., Das D. Improvement of fermentative hydrogen production – various approach. Appl. Microbiol. Biotechnol., 2004;65:520–9.
18. Nath K., Das D. Hydrogen production by Rhodobacter sphaeroides strain O.U. 001 using spent media of Enterobacter cloacae strain DM11. Appl. Microbiol. Biotechnol., 2005;68:533–41.
19. Oh Y.-K., Seol E.-H., Yeol Lee E., Park S. Fer-mentative hydrogen production by a new chemolithotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy, 2002;27:1373–9.
20. Hawkes F.R., Dindale R., Hawkes D.L., Hussy I. Sustainable fermentative biohydrogen: challenges for process optimization. Int. J. Hydrogen Energy, 2002;27:1339–47.
21. Hallenbeck P.C., Benemann J.R. Biological hydrogen production: fundamentals and limiting processes. Int. J. Hydrogen Energy, 2002;27:1185–93.
22. Yokoi H., Mori S., Hirose J., Hayashi S., Takasaki Y. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett., 1998; 20:890–5.
23. Lee C.M., Chen P.C., Wang C.C., Tung Y.C. Photohydrogen production using purple non-sulfur bacteria with hydrogen fermentation reactor effluent. Int. J. Hydrogen Energy, 2002;27: 1308–14.
24. Kim M.S., Lee T.J., Yoon Y.S., Lee I.G., Moon K.W. Hydrogen production from food processing wastewater and sewage sludge by anaerobic dark fermentation combined with photofermentation. In: Miyake J, Matsunaga T, Pietro AS, editors. Biohydrogen II. Am-sterdam: Elsevier; 2001, p. 263–72.
25. Ishikawa M., Yamamura S., Tamkamura Y., Sode K., Tamiya E., Tomiyama M. Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. Int. J. Hydrogen Energy, 2006;31:1484–9.
26. Schotz F., Schroder U. Baterial batteries. Nat. Biotechnol., 2003;21:3–4.
27. Liu H., Got S., Logan B.E. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol., 2005;39:4317–20.
28. Neil G., Nicholas D.J.D., Bockris J.O’M., McCann J.F. The photosynthetic production of hydrogen. Int. J. Hydrogen Energy, 1976;1:45–8.
29. Philips E.J., Mitsui A. Role of light intensity and temperature in the regulation of hydrogen photoproduction by marine cyanobacteria Oscillatoria sp. Miami BG7. Appl. Environ. Microbiol., 1983;45:1212–20.
30. Kars G., Gunduz U., Yucel M., Turker L., Eroglu I. Hydrogen production and transcriptional analysis of nifD, nifK and hupS genes in Rhodobacter slaeroides O.U. 001 grown in media with different concentrations of molybdenum and iron. Int. J. Hydrogen Energy, 2006;31:1536–44.
31. Ozturk Y., Yucel M., Daldal F., Mandac1 S., Gunduz U., Turker L., et al. Hydrogen production by using Rhodobacter capsulatas mutants with genetically modified electron transfer chains. Int. J. Hydrogen Energy, 2006;31:1545–52.
32. Chen C.-Y., Lu W.-B., Wu J.-F., Chang J.-S. Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. Int. J. Hydrogen Energy, 2007;32:940–9.
33. Younesi H., Najafpour G., Ismail K.S.K., Mo-hamed A.R., Kamaruddin A.H. Biohydrogen productionin a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodospirillum rubnum. Bioresour. Technol., 2008;99:2612–9.
34. Fabiano B., Perego P. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy, 2002;27:149–56.
35. Kumar N., Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process. Biochem., 2000;35:589–93.
36. Fang H.H.P., Zhu H., Zhang T. Phototrophic hydrogen production from glucose by pure and co-culture of Clostridium butyricum and Rhodobacter sphaeroides. Int. J. Hydrogen Energy, 2006;31:2223–30.
37. Oh Y.-K., Seol E.-H., Kim J.R., Park S. Fer-mentative biohydrogen production by a new chemohetrotrophic bacterium Citrobacter sp Y19. Int. J. Hydrogen Energy, 2003;28:1353–9.
38. Kotay S.M., Das D. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour. Technol., 2007;93:1183–90.
39. Zhang H., Bruns M.A., Logan B.L. Biological hydrogen production by Clostridium acetobytylicum in an unsaturated flow reactor. Water Res., 2006;40:728–34.
40. Das D., Dutta T., Nath K., Kotay S.M., Das A.K., Veziroglu T.N. The role of Fe-hydrogenase in biological hydrogen production. Curr. Sci., 2006;80:1627–37.
41. Mishra J., Khurana S., Kumar N., Ghosh A.K., Das D. Molecular cloning, characterization and overexpression of a novel [Fe]-hydrogenase isolated from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08. Biochem. Biophys. Res. Commun., 2004;324:679–85.
42. Chittibabu G., Nath K., Das D. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process. Biochem., 2006;41:682–8.
43. Kovac K.L., Maroti G., Rakhely G. A novel approach for biohydrogen production. Int. J. Hydrogen Energy, 2006;31:1460–8.
44. Vignais P.M., Magnis J.P., Willison J.C. Increasing biohydrogen production by metabolic engineering. Int. J. Hydrogen Energy, 2006;31:1478–83.
45. Mandal B., Nath K., Das D. Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol Lett 2006;28:831–5.
46. Kumar N., Ghosh A., Das D. Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnol. Lett., 2001;23:537–41.
47. Yu H., Zhu Z., Hu W., Zhang H. Hydrogen production rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy, 2002;27: 1359–65.
48. Kondo T., Wakayama T., Miyake J. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int. J. Hydrogen Energy, 2006;31:1522–6.
49. Chen C.-Y., Chang J.-S. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and tnternal optical-fiber illumination. Process. Biochem., 2006;41:2041–9.
50. Chang J.-S., Lee K.-S., Lin P.-J. Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrogen Energy, 2002;27:1167–74.
51. Zhang Z.-P., Tay J.-H., Show K.-Y., Yan R., Liang D.T., Lee D.-J., et al. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int. J. Hydrogen Energy, 2007; 32:185–91.
52. Chang F.-Y., Lin C.-Y. Biohydrogen production using an upflow anaerobic sludge blanket reactor. Int. J. Hydrogen Energy, 2004;29:33–9.
53. Ren N.Q., Chua H., Chan S.Y., Tsang Y.F., Wang Y.J., Sin N. Assessing optimal fermentation type for biohydrogen production in continuous-flow acidogenic reactors. Bioresour. Technol., 2007;98:1774–80.
54. Wu K.-J., Chang J.-S. Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process. Biochem., 2007;42:279–84.
55. Lee K.-S., Lo Y.-C., Lin P.-J., Chang J.-S. Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. Int. J. Hydrogen Energy, 2006;31:1648–57.
56. Wu K.-J., Chang C.-F., Chang J.-S. Simultaneous production of biohydrogen and bioethanol with flu-idized-bed and pack-bed bioreactors containing immobilized anaerobic sludge. Process. Biochem., 2007;42:1165–71.
57. Kumar N., Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrice. Enzyme Microb. Technol., 2001;29:280–7.
58. Mohan S.V., Babu V.L., Sarma P.N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour. Technol., 2006;99:59–67.
59. Yokoi H., Maki R., Hirose J., Hayashi S. Microbial production of hydrogen from starch-manufactering wastes. Biomass Bioenergy, 2002;22:389–95.
60. Wang C.C., Chang C.W., Chu C.P., Lee D.J., Chang V.-V., Liao C.S., et al. Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res., 2003;37:2789–93.
61. Alzate-Gaviria LM, Sebastian PJ, Parez-Hemandez A, Eapen D. Comparison of two anaerobic systems for hydrogen production from organic fraction of municipal waste and synthetic wastewater. Int. J. Hydrogen Energy, 2007;32:3141–6.
62. Ginkel S.W.V., Oh S.-E., Logan B.E. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy, 2005;30:1535–42.
63. Kim S.-H., Han S.-K., Shin H.-S. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int. J. Hydrogen Energy, 2004;29:1607–16.
64. Shin H.-S., Youn J.-H., Kim S.-H. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy, 2004;29:1355–63.
65. Vijayraghavan K., Ahmed D., Ibrahim M.K.B. Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int. J. Hydrogen Energy, 2006;31:569–79.
66. Eroglu E., Eroglu I., Gunduz U., Turker L., Yucel M. Biological hydrogen production from olive mill wastewater with twostage processes. Int. J. Hydrogen Energy, 2006;31:1527–35.
67. Ntaikou I., Gavala H.N., Komaros M., Lyberatos G. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int. J. Hydrogen Energy, 2008;33:1154–63.
68. Wang A., Ren N., Shi Y., Lee D.-J. Bioaugmented hydrogen production from microcrystal-line cellulose using coculture–Clostridium acetobutylicum X9 and Ethanoigenens harbinense B48. Int. J. Hydrogen Energy, 2008;33:912–7.
69. Datar R., Huang J., Maness P.-C., Mahagheghi A., Czernik S., Chounet E. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam explosion process. Int. J. Hydrogen Energy, 2007;32:932–9.
70. Levin D.B., Islam R., Cicek N., Sparkling R. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrate. Int. J. Hydrogen Energy, 2006;31:1496–503.
71. Asada Y., Tokumoto M., Aihara Y., Oku M., Ishimi K., Wakayama T., et al. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaerides RV. Int. J. Hydrogen Energy, 2006;31:1509–13.
72. Redwood M.D., Macaskie L.E. A two-stage, two-organism process for biohydrogen from glucose. Int. J. Hydrogen Energy, 2006;31:1514–21.
73. Kim M.S., Lee T.J., Yoon Y.S., Lee I.G., Moon K.W. Hydrogen production from food processing wastewater and sewage sludge by anaerobic dark fermentation combined with photofermentation. In: Miyake J., Matsunaga T., San Pietro A., editors. Biohydrogen II. Elsevier Science: Oxford; 2001, p. 263–72.
74. Zabut B., El-Kahlout K., Yucel M., Gunduz U., Turker L., Eroglu I. Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001 and Halobacterium salinarum in a photobioreactor. Int. J. Hydrogen Energy, 2006;31:1553–62.
75. Ren N., Li J., Li B., Wang Y., Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy, 2006;31:2147–57.
76. Benemann J.R. Feasibility analysis of photobiological hydrogen production. Int. J. Hydrogen Energy, 1997;22:979–87.
77. Nath K., Das D. Energy and economic analysis of a fermentative hydrogen production process. BioEnergy News, 2003;7:15–9.
78. Bockris J.O’M. The economics of hydrogen as a fuel. Int. J. Hydrogen Energy, 1981;6:223–41.
79. Tanisho S. Feasibility study of biological hydrogen production from sugar cane by fermentation. In: Veziroglu T.N., Winter C.-J., Basselt J.P., Kreysa G., eds. Hydrogen Energy Progress XI. Proceedings the 11th WHEC, Stuttgart, 1996, vol. 3, pp. 2601–6.
Рецензия
Для цитирования:
Дас Д., Везироглу Т.Н. ДОСТИЖЕНИЯ В ОБЛАСТИ ПОЛУЧЕНИЯ ВОДОРОДА БИОЛОГИЧЕСКИМ ПУТЕМ. Альтернативная энергетика и экология (ISJAEE). 2017;(22-24):83-98. https://doi.org/10.15518/isjaee.2017.22-24.083-098
For citation:
Das D., Veziroglu T.N. ADVANCES IN BIOLOGICAL HYDROGEN PRODUCTION PROCESSES. Alternative Energy and Ecology (ISJAEE). 2017;(22-24):83-98. (In Russ.) https://doi.org/10.15518/isjaee.2017.22-24.083-098