Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

RESEARCH OF EFFICIENCY OF THE USE OF POWER SUPPLY SYSTEMS ON THE BASIS OF PHOTOVOLTAIC MODULES FOR INDEPENDENT CONSUMERS IN VENEZUELA

https://doi.org/10.15518/isjaee.2015.10-11.003

Abstract

In the Republic of Venezuela, the government adopted a development program of power supply of the population on the basis of solar energy use. Therefore an urgent task is to determine the structure and parameters of scheme of power supply, and also to evaluate the efficiency of use of different types of solar modules for the conditions of the country. The purpose of this paper is to analyze the efficiency of silicon solar modules and solar modules with a holographic concentrator, each with and without water cooling systems, in the operational conditions of the area Alta Guajira in the Bolivarian Republic of Venezuela. The paper presents the study results of the effect of the cooling system on the characteristics of the holographic and conventional solar module.

About the Authors

V. A. Кuznеtsоvа
National Research University «Moscow Power Engineering Institute»
Russian Federation
senior lecturer of the “Hydropower and Renewable Energy” department


R. V. Pugachev
National Research University «Moscow Power Engineering Institute»
Russian Federation
professor of the “Hydropower and Renewable Energy” department


M. E. Rosendo Chacon
National Research University «Moscow Power Engineering Institute» Universidad Nacional Experimental Politécnica de la Fuerza Armada Nacional
Russian Federation
postgraduate student of the “Hydro power and Renewable Energy” department


A. S. Lopez Saab
National Research University «Moscow Power Engineering Institute» Universidad Nacional Experimental Politécnica de la Fuerza Armada Nacional
Russian Federation
postgraduate student of the “Hydropower and Renewable Energy” department


References

1. OPEC. Annual Statistical Bulletin, 2014. Available at: http://www.opec.org/ (in Eng.).

2. Ministerio del Poder Popular para la Energía Eléctrica. Energías renovables en zonas aisladas, indígenas y fronterizas, Junio 2012 (in Span.).

3. La Fundación para el Desarrollo del Servicio Eléctrico. Available at: http://www.fundelec.gov.ve/ (in Span.).

4. República Bolivariana de Venezuela, Instituto Nacional de Estadísticas. XIV Censo Nacional de Población y Vivienda, Octubre 2013. Available at: http://www.ine.gov.ve (in Span.).

5. Patel M.R. Wind and Solar Power Systems: Design, Analysis, and Operation. New York, USA Taylor & Francis, 2006 (in Eng.).

6. Jakhrani A.Q., Othman A.K., Rigit A.R.H. and Samo S.R. Comparison of Solar Photovoltaic Module Temperature Models. World Applied Sciences Journal, 2011, no. 14, pp. 1–18 (in Eng.).

7. Skoplaki E., Palyvos J.A. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Solar Energy, 2009, vol. 83, no. 5, pp. 614–624 (in Eng.).

8. Kalogirou S.A. Solar Energy Engineering: Processes and Systems. Academic Press, New York, 2009 (in Eng.).

9. Iurevych O., Gubin S., Dudeck M. Combined receiver of solar radiation with holographic planar concentrator. 1st International Symposium on electrical Arc and Thermal Plasma in Africa, 17-22 October 2011 (in Eng.).

10. Castillo J.E., Russo J.M., Aspnes E., and Rosenberg G. Low concentration planar holographic cigs, in Optics for Solar Energy. OSA Technical Digest, 2010, paper STuD3 (in Eng.).

11. Castillo-Aguilella J.E. Non imaging applications of volume diffractive optics, PhD thesis, Department of electrical and computer engineering, the university of Arizona, USA 2012 (in Eng.).

12. Iurevych O., Gubin S., Dudeck M. Modelling of a Hybrid Solar Panel with Solar Concentration. Electrical Engineering Research (EER), April 2013, vol. 1, issue 2, pp. 35–41 (in Eng.).

13. Prism Solar kompani i proizvoditelej ploskih golografičeskih koncentratorov. Available at: http://prismsolar.com/ (in Russ.).

14. Chaniotakis E. Modelling and analysis of water cooled photovoltaics, MSc thesis, Faculty of Energy System and Environment, Department of Mechanical Engineering, University of Strathclyde, Glasgow, Scotland; 2001 (in Eng.).

15. Bergene T. and Lovvik O.M. Model calculations on a flat-plate solar heat collector with integrated solar cell. Solar Energy, 1995, vol. 55, no. 6, pp. 453–462 (in Eng.).

16. Croitoru A.M., Badea A. Water cooling of photovoltaic panels from passive house located inside the University Politehnica of Bucharest. Scientific bulletin, series C: electrical engineering and computer science, 2013, vol. 75, pp. 277–290 (in Eng.).

17. Tripanagnostopoulos Y., Nousia Th., Souliotis M. and Yianoulis P. Hybrid photovoltaic/thermal solar systems, Solar Energy, 2002, no. 72(3), pp. 217–234 (in Eng.).


Review

For citations:


Кuznеtsоvа V.A., Pugachev R.V., Rosendo Chacon M.E., Lopez Saab A.S. RESEARCH OF EFFICIENCY OF THE USE OF POWER SUPPLY SYSTEMS ON THE BASIS OF PHOTOVOLTAIC MODULES FOR INDEPENDENT CONSUMERS IN VENEZUELA. Alternative Energy and Ecology (ISJAEE). 2015;(10-11):36-45. (In Russ.) https://doi.org/10.15518/isjaee.2015.10-11.003

Views: 861


ISSN 1608-8298 (Print)