Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

STUDY OF THE HYDROGEN BATTERY WITH FILLING CARBON NANOTUBES

https://doi.org/10.15518/isjaee.2017.28-30.025-037

Abstract

The article deals with the safe design of the hydrogen storage tank, which includes a set of cylindrical metal containers made of stainless steel 12Х18Н10Т filled with carbon nanotubes; a cooling jacket made of liquid nitrogen in the likeness of a Dewar vessel into which metal containers with carbon nanotubes (SWNT) are dipped and filled with gaseous hydrogen; a system of valves and high-pressure pipelines. The safety of hydrogen storage is ensured by the high strength and toughness of steel at low temperatures, from which metal storage tanks of hydrogen are made. The main advantage of such accumulator tank scheme is safety in case of mechanical damages: when any object is inserted into a storage tank, the liquid nitrogen cooling jacket is damaged first, the inner wall of which is made of thin gauge stainless steel, the outer wall is made of aluminum alloy and the main energy of the impact is expended. The article analyzes the scheme of the experiment and shows the results of the study of hydrogen storage at a liquid nitrogen temperature: hydrogen under high pressure of 15 MPa is pumped into a pre-cooled accumulator tank completely filled with SWNTs. Further operations are cutting off the storage tank from the mains with a shut-off valve; cutting off the cylinder with hydrogen from the pipeline supplying; the opening of a drain valve for bleeding hydrogen; heating the storage tank to the normal temperature; bleeding of sorbed hydrogen and measuring its volume. Hydrogen at the temperature of liquid nitrogen is confirmed to be retained by the SWNT in the accumulator tank, and at normal temperature to be released. The Nobel Laureate of R. Smalley first determined this in the 20th century. The article presents the data of microscopic (Phenom Pro microscope) and sorption studies of SWNT conglomerates of scaly structure.

 

About the Authors

I. A. Schestakov
Institute of Mechanics UB RAS
Russian Federation
Ph.D. in Engineering, Researcher


A. V. Vakhrushev
Institute of Mechanics UB RAS
Russian Federation
D.Sc. in Physics and Mathematics, Professor, Head of Laboratory


S. S. Vidrina
Kalashnikov Izhevsk State Technical University
Russian Federation
Applicant for a scientific degree


References

1. [1] Manaev, O.I. The dynamics and structure of energy (Dinamika i struktura jenergetiki) [E-resource]. Jenergobezopasnost' i jenergosberezhenie: nauchnotehnicheskij zhurnal, 2008, no. 2. Available on: http://www.endf.ru/23_1.php (21.09.2017) (in Russ.).

2. [2] Bokris J.O‘M, Veziroglu T.N., Smit D. Solar-hydrogen energy. The power that can save the world (Solnechno-vodorodnaja jenergija. Sila, sposobnaja spasti mir). Moscow: Izd-vo MEI Publ., 2002 (in Russ.).

3. [3] Gusev A.L., Kudelkina E.V. Phenomenological thermodynamics of adsorption for justification of synthesis of the optimal hydrogen accumulator based on zeolites, carbon nanotubes and microspheres [E-resource]. Japan, Tokyo, Conference: 30th ISTC Japan Workshop on Advanced Catalysis Technologies in Russia MHI Advanced Technology Research Center 16 April 2004, Affiliation: Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan-Russia Business Cooperation Committee International Science and Technology Center (ISTC)a. – Available on: https://www.researchgate.net/publication/301627206_Pheno menological_thermodynamics_of_adsorption_for_justificati on_of_synthesis_of_the_optimal_hydrogen_accumulator_b ased_on_zeolites_carbon_nanotubes_and_mikrospheres.

4. [4] Gusev A.L., Spitsyn B.V., Kazaryan M.A. Principles of hydrogen storage and rational design of novel materials for hydrogen accumulation. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2007;(4):202–203 (in Eng.).

5. [5] Gusev A.L. Poster inventions of the inventor Alexander Leonidovich Gusev (Sarov, Nizhny Novgorod region), presented by the Government of the Nizhny Novgorod region at the Exhibition in HANNOVER MESSE 2010 [E-resource]. Hannover (Germany), 19– 23, April, 2010, DOI: 10.13140/RG.2.2.24014.25927, 04/2010, Conference: Exhibition in Germany, Hanover., Affiliation: Government of the Nizhny Novgorod region, DOI: 10.13140/RG.2.2.24014.25927. – Available on: https://www.researchgate.net/publication/315573030_A L_Gusev_Poster_inventions_of_the_inventor_Alexander _Leonidovich_Gusev_Sarov_Nizhny_Novgorod_region _presented_by_the_Government_of_the_Nizhny_Novgo rod_region_at_the_Exhibition_in_HANNOVER_MESS E_2010_H.

6. [6] Mishhenko A.I., Belogub A.V., Savickij V.D., Talda G.B., Shatrov E.V., Kuznetsov V.M., Ramenskiy A.Yu. The use of hydrogen for motor vehicles (Prime-nenie vodoroda dlja dvigatelej avtomobil'nogo trans-porta). Atomno-vodorodnaja jenergetika i tehnologii. Sbornik statej Vypusk 8. Moscow: Energoatomizdat Publ., 1988 (in Russ.).

7. [7] Ramenskiy A.Yu., Shelishh P.B., Nefedkin S.I., Rychakov A.A., Starostin M.V. Application of hydrogen in road transport: prospects in the Russian market (Primenenie vodoroda na avtomobil'nom transporte: per-spektivy na rossijskom rynke). Trudy Mezhdunarodnogo Simpoziuma po vodorodnoj jenergetike. Moscow, 1–2 November 2005, MEI, pp.169–174. (in Russ.).

8. [8] Ramenskiy A.Yu., Shelishh P.B., Nefedkin S.I, Rychakov A.A., Starostin M.V.Prospects and immediate tasks of using hydrogen in a car on the Russian market (Perspektivy i blizhajshie zadachi ispol'zovanija vodoroda v avtomobile na Rossijskom rynke). Mezhdunarodnyj forum: Vodorodnye tehnologii dlja proizvodstva jenergii. Tezisy dokladov. 6–10 February 2006, Moscow, pp. 221–222 (in Russ.).

9. [9] Yanovskiy Yu.G., Shestakov I.A., Vahrushev A.V., Lipanov A.M. Battery hydrogen (Akkumuljator vodoroda) Pat. 2498151 RF, MPK F17C11/00; publ. November 10, 2013 (in Russ.).

10. [10] Vahrushev A.V. et al. Scientific and technical basis of hydrogen transport-energy systems (Nauchnotehnicheskie osnovy vodorodnyh transportnojenergeticheskih system). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2012;(4):41–48. (in Russ.).

11. [11] Vahrushev A.V., Suetin M.V. Carbon nanocontainers for gas storage (Uglerodnye nanokontejnery dlja hranenija gazov). Rossijskie Nanotehnologii, 2009;4(11–12):79–84 (in Russ.).

12. [12] Vahrushev A.V., Suetin M.V. Adsorption of hydrocarbons by nanotubes (Adsorbirovanie uglevodorodov nanotrubkami). Himicheskaja fizika i mezoskopija, 2008;10(1):18–25 (in Russ.).

13. [13] Vahrushev A.V., Lipanov A.M., Suetin M.V. Modeling of processes of hydrogen and hydrocarbon accumulation by nanostructures (Modelirovanie processov akkumuljacii vodoroda i uglevodorodov nanostrukturami). Moscow–Izhevsk: Institut komp'juternyh issledovanij; NIC “Reguljarnaja i haoticheskaja dinamika”, 2008 (in Russ.).

14. [14] Vahrushev A.V., Suetin M.V. Molecular-dynamic modeling of adsorption, storage and desorption of methane by controlled nanocapsules (Molekuljarnodinamicheskoe modelirovanie adsorbcii, hranenija i desorbcii metana upravljaemymi nanokapsulami). Rusnanotech., 2008:282–284 (in Russ.).

15. [15] Vahrushev A.V., Lipanov A.M., Suetin M.V. Modeling of hydrogen adsorption processes by complex nanostructures (Modelirovanie processov adsorbirovanija vodoroda kompleksnymi nanostrukturami). Izvestija tul'skogo gosudarstvennogo universiteta, 2007;12(1):21–41 (in Russ.).

16. [16] Vahrushev A.V., Lipanov A.M., Suetin M.V. Modeling of processes of hydrogen adsorption on fullerenes and carbon clusters (Modelirovanie processov adsorbirovanija vodoroda na fullereny i v uglerodnye klastery). Tjazhjoloe mashinostroenie, 2007;(9):20–22 (in Russ.).

17. [17] VahrushevA.V., Lipanov A.M., Suetin M.V. Modeling of processes of hydrogen adsorption by nanostructures (Modelirovanie processov adsorbirovanija vodoroda nanostrukturami). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2007;(1):13–20 (in Russ.).

18. [18] Suyetin M.V. Modeling of adsorption of storage and desorption of hydrogen by dynamic nanostructures - nanocapsules (Modelirovanie adsorbcii hranenija i desorbcii vodoroda dinamicheskimi nanostrukturami– nanokapsulami). Tezisy dokladov Vserossijskoj shkolykonferencii molodyh uchenyh i studentov “Mate-maticheskoe modelirovanie v estestvennyh naukah”, Perm, 2007, p. 56 (in Russ.).

19. [19] Vahrushev A.V. Modeling of methane storage in controlled nanocapsules (Modelirovanie hranenija metana v upravljaemyh nanokapsulah). Tezisy dokladov Vserossijskoj shkoly-konferencii molodyh uchenyh i studentov “Matematicheskoe modelirovanie v estestvennyh naukah”, Perm, 2008, p. 58 (in Russ.).

20. [20] Suetin M.V. Modeling of adsorption, storage and desorption of hydrogen and other gases by dynamic nanostructures (Modelirovanie adsorbcii, hranenija i desorbcii vodoroda i drugih gazov dinamicheskimi nanostrukturami) VII Konferencija molodyh uchenyh “Aktual'nye problemy sovremennoj neorganicheskoj himii i materialovedenija”, Zvenigorod, 2007, p. 49 (in Russ.).

21. [21] Suyetin M.V., Vakhrouchev A.V. Guided Carbon Nanocapsules for Hydrogen Storage. J. Phys. Chem. C, 2011;115(13):5485–5491.

22. [22] Suyetin M.V., Vakhrouchev A.V. Nanocapsule with pump for methane storage. Phys. Chem. Chem. Phys., 2011;13(20):9863–9870.

23. [23] Suyetin M.V., Vakhrouchev A.V. Molecular dynamic simulation of methane storage in nanocapsules [E-resource]. Available on: http://www.udman.ru/iam/files/Suyetin.pdf (12.05.17.).

24. [24] Vakhrushev A.V., Suyetin M.V. Hydrogen storage in carbon nanocapsules. MPA-2007, pp. 28–29.

25. [25] Volkova E.I., Vakhrushev A.V., Suyetin M.V. Improved design of metal-organic frameworks for efficient hydrogen storage at ambient temperature: A multiscale theoretical investigation. International journal of hydrogen energy, 2014;39:8347–8350.

26. [26] Vakhrushev A.V., Fedotov A.Y., Shushkov A.A. Calculation of Elastic Properties of Composite Materials Based on Nanoparticles Using Multilevel Modeling. Advances in Sustainable Petroleum Engineering Science, 2014;6(3):283–298.

27. [27] Vakhrushev A.V., Fedotov A.Y., Shushkov A.A. Calculation of the Elastic Parameters of Composite Materials Based on Nanoparticles Using Multilevel Models. Nanostructures, Nanomaterials, and Nanotechnologies to Nanoindustry, vol. 1, New Jersey, Apple Academic Press., 2014, pp. 51–70.

28. [28] Chebak A.F. Storage tank for hydrogen (Emkost' dlja hranenija vodoroda). Pat. 2267694 RF, MPK F17C11/00; publ. October 27, 2009 (in Russ.).

29. [29] Fedorov A.S., Kuzubov A.A. The method and apparatus for storing gas inside a nanopore of a solid carrier (Sposob i ustanovka dlja akkumulirovanija gaza vnutri nanopor tverdogo nositelja). Pat. 2319893 RF, MPK F17C11/00; publ. March 20, 2008 (in Russ.).

30. [30] Vahrushev A.V., Lipanov A.M., Suetin M.V. A container for storing various liquid and gaseous substances (Emkost' dlja hranenija razlichnyh zhidkih i gazoobraznyh veshhestv). Pat. 2347135 RF, MPK F17C11/00; publ. February 20, 2009 (in Russ.).

31. [31] Gorjachev I.V., Voshhinin S.A. Battery hydrogen (Akkumuljator vodoroda). Pat. 2346202 RF, MPK F17C11/00; publ. February 10, 2009 (in Russ.).

32. [32] Hultquist S.J., Tom G.M., Kirlin P.S., McManus J.V. Sorbent-based gas storage and delivery system for dispensing of high-purity gas, and apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing same. Pat. 6132492 МPК F17C11/00 USA. October 17, 2000.

33. [33] Klos H., Schütz W. Device for storing compressed gas. Pat. № 6432176 МPК F17C11/00 USA. August 13, 2000.

34. [34] Yaghi O.M., Eddaoudi M., Li H., Kim J., Rosi N. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality there in, with application for gas storage. Pat. № 6930193 МPК F17C11/00 USA. August 16, 2005.

35. [35] Shestakov I.A., Vakhrushev A.V., Lipanov A.M. Investigation of the additional lifting force of the aircraft of vertical take-off and landing (Issledovanie dopolnitel'noi pod"emnoi sily letatel'nogo apparata vertikal'nogo vzleta i posadki). Aviatsionnaya promyshlennost', 2016;(3):1–4 (in Russ.).


Review

For citations:


Schestakov I.A., Vakhrushev A.V., Vidrina S.S. STUDY OF THE HYDROGEN BATTERY WITH FILLING CARBON NANOTUBES. Alternative Energy and Ecology (ISJAEE). 2017;(28-30):25-37. (In Russ.) https://doi.org/10.15518/isjaee.2017.28-30.025-037

Views: 1419


ISSN 1608-8298 (Print)