CLIMATIC ISSUES FOR RENEWABLE AUTONOMOUS PV LIGHT AND SIGNAL UNITS DEVELOPMENT
https://doi.org/10.15518/isjaee.2015.10-11.010
Abstract
The paper shows that the fast growth and implementation of renewable energy systems require complex analysis for such systems composition and components taking into account the climatic region conditions of application. The problem is particularly urgent because of the significant differences of climatic conditions in the Russian Federation regions. The fact that operating temperature regimes are not taken into consideration in the design of power plants, in some cases leads to efficiency loss of power plants and reduce warranty of consumer power supply. The energy storage devices used in power plants are the most sensitive to temperature regimes. This paper analyses the high and low operation temperature influence on different electric energy storage devices parameters of autonomous PV light and signal units as renewable energy systems containing energy storage devices. Such power plants usually don’t have resources for additional accumulator heating/cooling, therefore the correct choice of storage device is quite crucial in this case.
About the Authors
O. S. PopelRussian Federation
DSc (engineering), Deputy Director of Joint Institute for High Temperatures
S. E. Frid
Russian Federation
PhD (engineering), Head of Laboratory, Joint Institute for High Temperature
Yu. G. Kolomiets
Russian Federation
PhD (engineering), researcher of Joint Institute for High Temperatures
A. B. Tarasenko
Russian Federation
engineer of Joint Institute for High Temperatures
References
1. Fortov V.E., Popel O.S. Sostoânie razvitiâ vozobnovlâemyh istočnikov ènergii v mire i v Rossii. Teploènergetika, 2014, no. 6, pp. 1–10 (in Russ.).
2. Popel O.S., Tarasenko A.B., Frid S.E. Analiz èffektivnosti ispol’zovaniâ avtonomnyh fotoèlektričeskih sistem naružnogo osveŝeniâ v klimatičeskih usloviâh Moskvy i ûga Rossii. Teploènergetika, 2012, no. 11, pp. 19–25 (in Russ.).
3. «Moskva zasvetitsâ po-novomu» Available at: http://www.mk.ru/social/article/2012/01/09/658831-moskva-zasvetitsya-ponovomu.html (in Russ.).
4. Svetofory na solnečnyh batareâh PK «Agromaster». Available at: http://www.pk-agromaster.ru/fonari2/; http://lifenews.ru/news/75983 (in Russ.).
5. Power Sonic battery manual. Available at: http://www.batteryweb.com/manuals/techman.pdf; POWER-SONICCORPORATION 9163 Siempre Viva Road San Diego, CA 92173 (in Eng.).
6. Popel O.S., Tarasenko A.B. Sovremennye vidy èlektrohimičeskih nakopitelej èlektričeskoj ènergii i ih primenenie v avtonomnoj i centralizovannoj ènergetike. Teploènergetika, 2011, no. 11, pp. 2–11 (in Russ.).
7. Website «Vaš solnečnyj dom». Available at: http://www.solarhome.ru/ru/batteries/index.htm] (in Russ.).
8. Volfkovich Yu.M., Bagotzky V.S. The method of standard porosimetry 2. Investigation of the formation of the porous structures Journal of Power Sources, 1994, vol. 48, pp. 327 (in Eng.).
9. Pandolfo A.G., Hollenkamp A.F. Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006, vol. 157, pp. 11–27 (in Eng.).
10. David G. Vutetakis. The Avionics Handbook, Ch. 10, CRC Press LLC, 2001 (in Eng.).
11. Popel O.S., Tarasenko A.B. Nakopiteli èlektričeskoj ènergii. Ènergoèkspert, 2011, no. 3, pp. 26–35 (in Russ.).
12. The AES Corporation Summary of AltairNano Validation Testing, June 27, 2008. Available at: http://www.b2i.cc/Document/546/KEMA_Report.pdf/ (in Eng.).
13. A123 Systems press-release from June, 12, 2012. Available at: http://www.a123.com (in Eng.).
14. Martha Schreiber, Adam H. Whitehead, Martin Harrer. VANADIUM REDOX FLOW BATTERY IMPROVED TECHNOLOGY. ENVIETECH 31.01.–01.02.2008, Wien (in Eng.).
15. Maria Skyllas-Kazacos. An Historical Overview of the Vanadium Redox Flow Battery Development at the University of New South Wales, Australia. Available at: http://www.ceic.unsw.edu.au/centers/vrb/ (in Eng.).
16. Rahman F., Skyllas-Kazacos M. Vanadium Redox Battery: Positive Half-Cell Electrolyte Studies. Journal of Power Sources, 2008, vol. 72, issue 2, pp. 105–110 (in Eng.).
17. Vanadium Redox Flow Batteries: An In-Depth Analysis. EPRI, Palo Alto, CA, 2007 (in Eng.).
18. Jeremy Lagorse, Damien Paire, Abdellatif Miraoui. Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery. Renewable Energy, 2009, no. 34, pp. 683–691(in Eng.).
19. Pinton E., Fourneron Y., Rosini S., Antoni L. Experimental and theoretical investigations on a proton exchange membrane fuel cell starting up at subzero temperatures. Journal of Power Sources, 2009, 186, pp. 80–88 (in Eng.).
20. Atlas resursov solnečnoj ènergii na territorii Rossii / O.S. Popel, S.E. Frid, Yu.G. Kolomiets et al. Moscow: OIVT RAN Publ., 2010 (in Russ.).
21. Fortov V., Popel O. Vozobnovlâemye istočniki ènergii dlâ ènergosnabženiâ potrebitelej v Rossii. Ènergetičeskij vestnik, 2010, no. 1 (8), pp. 9–29 (in Russ.).
Review
For citations:
Popel O.S., Frid S.E., Kolomiets Yu.G., Tarasenko A.B. CLIMATIC ISSUES FOR RENEWABLE AUTONOMOUS PV LIGHT AND SIGNAL UNITS DEVELOPMENT. Alternative Energy and Ecology (ISJAEE). 2015;(10-11):98-106. (In Russ.) https://doi.org/10.15518/isjaee.2015.10-11.010