Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

LIFE CYCLE ASSESSMENT OF THE HYDROGEN ENERGY FACILITY BY CRITERION FOR MAXIMUM LOAD FREQUENCY

https://doi.org/10.15518/isjaee.2018.04-06.025-036

Abstract

The paper deals with the issue of providing the Nuclear Power Plant (NPP) by the base load in the nighttime offpeak load hours. In order to search a solution to this issue, we analyze the energy storage technologies including the hydroelectric power stations. Since the construction of this station is associated with various risks (technical, environmental, seismic, etc.), and their deployment in the immediate vicinity of Near Nuclear Power Plants is unacceptable. This implies the tariffs for the power supply from the grid transmission system may exceed the nuclear generating costs 3 or 4 times, and significantly affect the cost for the produced peak energy and competitive advantages of these stations. As more competitive technology of electric energy storage, the paper reviews the system based on utilizing hydrogen energy facilities with hydrogen and oxygen produced by water electrolysis due to excess power from nuclear power plants in the nighttime. The key advantage of these facilities is location in the vicinity of NPPs with the possibility of charging at the cost of the NPP energy. At the same time, hydrogen and oxygen production and their further utilization in the NPP steam cycle has the recurrent nature and connected with the daily startup and shutdown procedures of the main facilities. Thus, the aim of this research is to determine the life cycle of the main hydrogen energy facility under cyclic loads. The fatigue fracture theory is applied to analyze the performance of startup/shutdown cycles in the main hydrogen energy facility in combination with the NPP. We have conducted the estimation of fatigue crack growth depending on the load frequency for the critical components of electrolysis plants, compressors, metal hydrogen and oxygen storage tanks, as well as hydrogen-oxygen combustion chambers. The paper focuses on the impact of hydrogen corrosion on the rate of fatigue crack growth and proposes criterion defining the number of cycles occurred prior to the fracture extension process. Based on the criterion of maximum cycles prior to the fraction extension process, we have defined the boundaries for effective performance of the main hydrogen energy facility.

About the Author

A. N. Bairamov
Saratov Scientific Center RAS
Russian Federation

Ph.D. in Engineering, Senior Researcher

SPIN-код: 1620-2441



References

1. [1] Strategy Energy of Russia on Period Till 2035 year (Energeticheskaya strategiya Rossii na period do 2035). The Ministry of Energy of the Russian Federation (Ministerstvo energetiki Rossiiskoi Federatsii). Moscow, 2014 (in Russ.).

2. [2] Aminov R.Z., Bairamov A.N. Kombinirovanie vodorodnykh energeticheskikh tsiklov s atomnymi elektrostantsiyami. Moscow: Nauka Publ., 2016 (in Russ.).

3. [3] Aminov R.Z., Bairamov A.N. Performance evaluation of hydrogen production based on off-peak electric energy of the nuclear power plant (Otsenka effektivnosti polucheniya vodoroda na baze vnepikovoi elektroenergii AES), International journal of hydrogen energy, 2017;42:21617–21625 (in Eng.).

4. [4] Aminov R.Z., Schastlivtsev A. I., Bairamov A. N. On the issue of investigating the kinetics of processes in dissociated water steam (K voprosu issledovaniya kinetiki protsessov v dissotsiirovannom vodyanom pare),International journal of hydrogen energy, 2017;42:20843–20848 (in Eng.).

5. [5] Aminov R.Z., Bairamov A. N. Hydrogen production competitive efficiency estimated with the method of water electrolysis on basis off-peak electricity (Otsenka konkurentnoi effektivnosti polucheniya vodoroda metodom elektroliza vody na osnove vnepikovoi elektroenergii), Izvestiya RAN. Energetika, 2016;4:84– 90 (in Russ.).

6. [6] Aminov R.Z., Bairamov A. N. System efficiency investigation of hydrogen cycles on basis off-peak electricity of a nuclear power plant (Sistemnaya effektivnost' vodorodnykh tsiklov na osnove vnepikovoi elektroenergii AES), Izvestiya RAN. Energetika, 2011;4:52–61 (in Russ.).

7. [7] Aminov R.Z, Bairamov A.N. Pat. 2427048 RF, MPK7 F 22B 1/26, G 21D5/16, F 01K3/18. System combustion of hydrogen for steam-hydrogen overheating of fresh steam in the cycle of an atomic power station (Sistema szhiganiya vodoroda dlya paro-vodorodnogo peregreva svezhego para v tsikle atomnoi elektricheskoi stantsii) / 20.08.2011, Bul. № 23, 8 p. (in Russ.).

8. [8] Aminov R.Z., Egorov A.N. Methods of estimation of termodynamic efficiency of additional heat in humid-steam cycles of atomic power plant (Metodika otsenki termodinamicheskoi effektivnosti dopolnitel'nogo podvoda tepla vo vlazhno-parovykh tsiklakh AES), Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki, 2011;11–12:20–29 (in Russ.).

9. [9] Shpil'rain E.E., Sarumov Yu.A., Popel’ O.S. Use of hydrogen in power engineering and in energytechnological complexes (Primenenie vodoroda v energetike i v energotekhnologiche-skikh kompleksakh), Atomno-vodorodnaya energetika i tekhnologiya, 1982;4:5–22 (in Russ.).

10. [10] Malyshenko S.P., Nazarova O.V., Sarumov Yu.A. Some aspects of the use of hydrogen as energy carrier in power engineering some thermodynamic and technical-economy aspects about this (Nekotorye termodinamicheskie i tekhniko-ekonomicheskie aspekty primeneniya vodoroda kak energonositelya v energetike), Atomno-vodorodnaya energetika i tekhnologiya, 1986;7:105–126 (in Russ.).

11. [11] Forsberg C.W., Haratyk G. Nuclear Wind hydrogen systems for variable electricity and hydrogen production (Atomnye vodorodnye sistemy dlya proizvodstva elektroenergii i vodoroda), International Congress on Energy, New York, 2011. Available on: https://www.aiche.org/academy/videos/conference-presentations/nuclear-wind-hydrogen-systems-variable-electricity-and-hydrogen-production (26.02.2018) (in Eng.).

12. [12] Forsberg C. W. Is hydrogen the future of nuclear energy? (Yavlyaetsya li vodorod budushchim yadernoi energii?), International topical meeting on the safety and technology of nuclear hydrogen production, control and management, Boston, 2007. Available on: http://www.350.me.uk/TR/Hansen/Forsberg01.pdf (26.02.2018) (in Eng.).

13. [13] Forsberg C. W. Hydrogen futures and technologies (Budushchie vodorodnye tekhnologii), Rohsenow Symposium on Future Trends in Heat Transfer, Massachusetts, 2003. Available on: https://dspace.mit.edu/bitstream/handle/1721.1/7303/FO RSBERG.pdf?sequence=1 (26.02.2018) (in Eng.).

14. [14] Aminov R.Z, Bairamov A.N., Egorov A.N. Turbine plant of the nuclear power plant (options) (Turbinnaya ustanovka atomnoi elektrostantsii (varianty)). Pat. № 2459293 RF, MPK7 G 21D1/00. / 20.08.2012, Bul. № 23, 9 p. (in Russ.).

15. [15] Aminov R.Z., Egorov A.N., Yurin V.E. Reservation of NPP's own needs in conditions of deenergization based on the hydrogen cycle (Rezervirovanie sobstvennykh nuzhd AES v usloviyakh polnogo obestochivaniya na osnove vodorodnogo tsikla), Atomnaya energiya, 2013;4 (114):234–236 (in Russ.).

16. [16] Bairamov A.N. Evaluation of the operating resource of the most loaded rotor element of the additional steam turbine with steam-hydrogen overheat of the working fluid at a nuclear power station (Otsenka rabochego resursa naibolee nagruzhennogo elementa rotora dopolnitel'noi parovoi turbiny s paro-vodorodnym peregrevom rabochego tela v sostave AES), Journal of Physics: Conference Series, 2017;891 (in Eng.).

17. [17] Aminov R.Z., Yurin V.E. Nuclear power plant safety improvement based on hydrogen technologies (Puti povysheniya bezopasnosti AES na osnove vodorodnykh tekhnologii). Nuclear Energy and Technology, 2015;1:77–81(in Eng.).

18. [18] Aminov R.Z., Bairamov A.N., Yurin V.E. System of hydrogen burning in the nuclear power plant cycle with the adjustment of the temperature of hydrogen-oxygen steam (Sistema szhiganiya vodoroda v tsikle AES s regulirovaniem temperatury vodorod-kislorodnogo para). Pat. №2488903 RF, MPK7G21D5/16 (2006.01) / 27.07.13, Bul. 21, 17 p. (in Russ.).

19. [19] Mechanics of Destruction and Strength of Materials (Mekhanika razrusheniya i prochnost' materialov: spravochnoe posobie) / Ed. V.V. Panasyuka, Kiev: Nauk. dumka Publ.,1990;4:680 (in Russ.).

20. [20] Machine-Building: Encyclopedia on Machine-Building (Mashinostroenie: entsiklopediya po mashinostroeniyu) / Editorial Board: K.V. Frolov [et al.]. Moscow: Mashinostroenie Publ., 2010;II-1:852(in Russ.).

21. [21] Kogaev V.P., Makhutov N. A., Gusenkov A.P. The Calculations Detail of Machines and Constructions on Strength and Long-Lived (Raschety detalei mashin i konstruktsii na prochnost' i dolgo-vechnost'). Moscow: Mashinostroenie, 1985:223 (in Russ.).

22. [22] Pavlov P.A. The Foundations of Engineering’s Calculations of Elements Machines on Fatigue and Long-Lived Strength (Osnovy inzhenernykh raschetov elementov mashin na ustalost' i dlitel'nuyu prochnost'), Leningrad, 1988:252(in Russ.).

23. [23] Troshchenko V.T., Pokrovskii V.V., Prokopenko A.V. The Stability of Metals Crack in Cycles Loads (Treshchinostoikost' metallov pri tsiklicheskom nagruzhenii), Kiev: Naukova dumka Publ., 1987 (in Russ.).

24. [24] Cherepanov G.P. The Mechanics of Frail Destructions (Mekhanika khrupkogo razrusheniya) Mos-cow: Nauka, 1974:640(in Russ.).

25. [25] Lashchinskii A.A., Tolchinskii A.R. Basics calculating and designing chemical equipment (Osnovy konstruirovaniya i rascheta khimicheskoi ap-paratury) / Ed. N.N. Loginova. Leningrad: Mashinostroenie Publ., 1970 (in Russ.).

26. [26] Archakov Yu. I. Hydrogen resistance of steel. Series: the achievements of domestic metallurgy (Vodorodoustoichivost' stali. Seriya: dostizheniya otechestvennogo metallovedeniya) Moscow: Metallurgiya Publ., 1978:152(in Russ.).

27. [27] Archakov Yu.I. Hydrogen corrosion of steel (Vodorodnaya korroziya stali), Moscow: Metallurgiya Publ., 1985:192(in Russ.).

28. [28] Shpil'rain E.E., Malyshenko S. P., Kuleshov G. G. Introduction to hydrogen power engineering (Vvedenie v vodorodnuyu energetiku), M.: Energoatomizdat, 1984:264 (in Russ.).

29. [29] Yakimenko L.M., Modylevskaya I. D., Tkachek Z.A. Electrolysis of water (Elektroliz vody), Moscow: Khimiya Publ., 1970 (in Russ.).

30. [30] Bairamov A. N. Technical and economic aspects placement of the underground of metal storage tanks for hydrogen and oxygen in the hydrogen energy complex (Tekhniko-ekonomicheskie aspekty podzemnogo razmeshcheniya metallicheskikh emkostei khraneniya vodoroda i kisloroda v sostave vodorodnogo energeticheskogo kompleksa), Trudy akademenergo, 2014;2:79–86 (in Russ.).

31. [31] Bairamov A.N. System analysis operation of the main equipment of the hydrogen energy complex of the stress-cyclic mode (Sistemnyi analiz napryazhennotsiklicheskogo rezhima raboty osnovnogo oborudovaniya vodorodnogo energeticheskogo kompleksa), Trudy akademenergo, 2017;1:71–96 (in Russ.).

32. [32] Bairamov A.N., Egorov A. N. Estimation of the geometric size of the two-stage combustion system of hydrogen with oxygen in the steam turbine cycle of the nuclear power plant (Otsenka geometricheskikh razmerov dvukhstupenchatoi sistemy szhiganiya vodoroda s kislorodom v paroturbinnom tsikle atomnoi stantsii). Trudy akademenergo, 2014;1:41–53 (in Russ.).

33. [33] Aminov R.Z., Egorov A.N. Development production energy differential equations with additional heat supply in humid-steam cycles of nuclear power plants (Razrabotka differentsial'nykh uravnenii vyrabotki energii pri dopolnitel'nom podvode tepla vo vlazhnoparovykh tsiklakh AES). Vestnik SGTU, 2011;1(54):18– 25 (in Russ.).

34. [34] Malyshenko S.P. The Institute of High Temperatures of RAS research and development in the field of hydrogen energy technologies (Issledovaniya i razrabotki OIVT RAN v oblasti tekhnologii vodorodnoi energetiki), International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2011;3(95):10–34 (in Russ.).

35. [35] Bebelin I.N. [and others] Development and investigation of an experimental hydrogen-oxygen generator with a capacity of 10 MW (heat) (Razrabotka i issledovanie eksperimental'nogo vodorodo-kislorodnogo parogeneratora moshchnost'yu 10 MVt(t)). Thermal Engineering, 1997; 8:48–52 (in Russ.).

36. [36] Egorov A.N. Parameters study of a hydrogen-oxygen steam generator with a cooled combustion chamber (Issledovanie parametrov vodorodkislorodnogo paro-generatora s okhlazhdaemoi kameroi sgoraniya), Trudy Akademenergo, 2017;4:16–23.


Review

For citations:


Bairamov A.N. LIFE CYCLE ASSESSMENT OF THE HYDROGEN ENERGY FACILITY BY CRITERION FOR MAXIMUM LOAD FREQUENCY. Alternative Energy and Ecology (ISJAEE). 2018;(4-6):25-36. (In Russ.) https://doi.org/10.15518/isjaee.2018.04-06.025-036

Views: 658


ISSN 1608-8298 (Print)