Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

HYDROGEN CATALYTIC RECOMBINER’S ENGINEERING MODEL FOR DYNAMIC FULL-SCALE CALCULATIONS

https://doi.org/10.15518/isjaee.2018.04-06.037-056

Abstract

In order to protect the hermetic enclosure and the equipment and systems of the reactor installation housed in it from damage caused by the ignition (explosion) of hydrogen, the overwhelming majority of nuclear power plants with pressurized water reactors are provided with a hydrogen concentration monitoring system and an emergency hydrogen removal system. These systems prevent the formation of explosive mixtures in the accident localization zone by maintaining the volume concentration of hydrogen in the mixture below the safety limits which ensures the preservation of the density and strength of the hermetic enclosure and the operability of other localizing security systems. A key component of the emergency hydrogen removal system is a passive autocatalytic hydrogen recombiner which operation is based on the principle of catalytic recombination of hydrogen and oxygen. There is an urgent need for a full-scale dynamic calculation of the development of emergency conditions in a nuclear power plant container accompanied by a large release of hydrogen. In order to achieve this goal, we have constructed and justified a simple engineering thermohydraulic model of hydrogen removal in the operation of the PAR based on the available experimental data. The paper presents the application results of the model as a part of contour industry codes: RELAP, TRACE, and CORSAR, intended, among other things, for carrying out multifactor and fullscale calculations of the dynamics of emergency processes with the release of hydrogen into the nuclear power plant premises. This model allows us to substantiate the dynamics of local concentrations of gas components of the mixture in a confined space, the temperature of the mixture, the catalyst and the walls of the box, the pressure when hydrogen or steam is supplied to the box. We have analyzed various rates of hydrogen supply to a closed box in order to numerically substantiate the time when the concentration reached the maximum level. Moreover, we have calculated the performance for several entrance concentrations of hydrogen, and obtained a satisfactory agreement between the dynamics of the concentrations, temperatures of the catalyst and gas, and the productivity of the passive autocatalytic hydrogen recombiner. These calculations are based on the results of the calculated and the available experimental data comparison.

About the Authors

A. V. Avdeenkov
DST Hydrogen Infrastructure Center of Competence (HySA Infrastructure), Faculty of Engineering North-West University; State Scientific Center of Russian Federation – Institute of Physics and Power Engineering (IPPE)
Russian Federation
Ph.D. in Physics and Mathematics, Institute of Physics and Power Engineering (Russia); Deputy General Director of DST National Center; Extraordinary Professor at “HySA Infrastructure” of NorthWest University


Vl. V. Sergeev
State Scientific Center of Russian Federation – Institute of Physics and Power Engineering (IPPE)
Russian Federation
Senior Researcher


A. V. Stepanov
State Scientific Center of Russian Federation – Institute of Physics and Power Engineering (IPPE)
Russian Federation
Head of Laboratory


A. A. Malakhov
State Scientific Center of Russian Federation – Institute of Physics and Power Engineering (IPPE)
Russian Federation
EngineerResearcher


D. Y. Koshmanov
Investment Scientific-Production Company” Russian Energy Technologies” (RET)
Russian Federation


S. L. Soloviev
All-Russian Research Institute for Nuclear Power Plants Operation (VNIIAES)
Russian Federation
D.Sc. in Engineering, Supervisor


D. G. Bessarabov
DST Hydrogen Infrastructure Center of Competence (HySA Infrastructure), Faculty of Engineering North-West University
South Africa
Ph.D. in Chemistry, DST National Center: HySA Infrastructure: Director, North-West University


References

1. [1] Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants (Smyagchenie opasnostei, svyazannykh s vodorodom pri tyazhelykh avariyakh na atomnykh elektrostantsiyakh), IAEA-TECDOC (IAEA), 2011;1661. Available on: https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1661_Web.p df (05.10.2017) (in Eng.).

2. [2] Hydrogen in Water – Cooled Nuclear Power Reactors (Vodorod v vodoohlazhdaemyh Jadernyh Jenergeticheskih Reaktorah), IAEA and CEC, 1992;EUR-14037 (in Eng.).

3. [3] Autocatalytic Recombinant Systems (Avtokataliticheskie Rekombinacionnye Systemy). Wasserstoffabbau SIEMENS AG(KWU), 1998;NDS9 (in Deu.).

4. [4] Ferroni F., Schiel L., Collins P. Containment protection with hydrogen recombiners (Protivoavariinaya zashchita v rekombinatorakh vodoroda). Atw. Atomwirtschaft, Atomtechnik, 1994;39(7)513–514 (in Deu.).

5. [5] Devit U.A., Koroll J.N., Luazel’-Sitar J. Development of a hydrogen recombiner in the “Atomic Energy of Canada Limited” company (AECL) (Razrabotka vodorodnogo rekombinatora v kompanii “Atomik Enerzhi of Kanada Limited”). Workshop OECD/NEA/CSNI “The Implementation of hydrogen mitigation techniques”, 1996;NEA/CSNI/R(96)9 (in Eng.).

6. [6] Passive catalytic hydrogen recombiner RVK-500 (Passivnyi kataliticheskii recombinator vodoroda RVK-500). Tekhnicheskie usloviya RET-101.00.000, 2004; (in Russ.).

7. [7] Passive catalytic hydrogen recombiner RVK-500, RVK-1000 (Passivnyi kataliticheskii recombinator vodoroda RVK-500, RVK-1000). Tekhnicheskie usloviya RET-101.00.000, 2005 (in Russ.).

8. [8] Anpilov S.V., Grigoruk D.G., Kondratenko P.S., Khristenko E.B., Chizhov M.E. Mathematical Modeling of Heat and Mass Transfer in a Passive Autocatalytic Recombiner (Matematicheskoe modelirovanie teplomasso perenosa v passivnom avtokataliticheskom rekombinatore). Thermal Engineering, 2013;60(11)818– 822 (in Russ.).

9. [9] Blanchat K. et al. Analysis of hydrogen depletion using a scaled passive autocatalytic recombiner (Analiz udaleniya vodoroda pri pomoschi masshabiruemykh passivnyh recombinatorov vodoroda). Nuclear Engineering and Design, 1999;187:229–239 (in Eng.).

10. [10] Reinecke E. Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors (Issledovanie perspektivnyh recombinatorov vodoroda kak sredstvo obespecheniya bezopasnosti kontainmentov legko-vodyanyh reaktorov). Nuclear Engineering and Design, 2004;230:49–59 (in Eng.).

11. [11] Meynet N. et al. Progress in PARs modeling for reactor application, 6th European Review meeting on Severe Accident Research (Progress v modelirovanii PKRV dlya reaktornyh prilozheni). ERMSAR-2013, Avignon (France), Palais des Papes, 2–4 October, 2013 (in Eng.).

12. [12] Reinecke E. et al., Open issues in the applicability of recombiner experiments and modelling to reactor simulations (Otkrytye voprosy primenimosti experimentov i modelirovaniya s rekombinatotami k reaktornomu modelirovaniyu). Progress in Nuclear Energy, 2010;52:136–147 (in Eng.).

13. [13] Program of work to eliminate comments from Rostekhnadzor to passive catalytic hydrogen recombiners (Approved by First Deputy Director General of OJSC “Rosenergoatom Concern” Asmolov V.G.) (Programma rabot po ustraneniyu zamechanii Rostechnadzora k passivnym kataliticheskim rekombinatoram vodoroda (Utverzhdena pervym zamestitelem General’nogo direktora OAO “Kontsern Rosenergoatom” Asmolovym V.G.), 2015 (in Russ.).

14. [14] Report of JSC “SSC RF-IPPE” on “Experimental research and justification of the design characteristics of hydrogen recombiners produced by ZAO NPK «RET» No 224/5.42.02-16/13141, contract No 5296 of July 18, 2016, Stage 7”; Analysis of performed tests to determine the characteristics of recombiners, Stage 1, No. 224/5.42.02-15/8055 (Otchet AO “GNC RF-FEI” po teme “Jeksperimental’nye issledovanija i obosnovanie proektnyh harakteristik recombinatorov vodoroda proizvodstva ZAO NPK “RET” №224/5.42.02-16/13141, dogovor №5296 Jetap 7”; Analiz vypolnennyh ispytanij po opredeleniju harakteristik rekombinatorov, Jetap 1, №224/5.42.02-15/8055), 2016 (in Russ.).

15. [15] Appel C., Mantzaras J., Schaeren R., Bombach R., Inauen A., Kaeppeli B., Hemmeling B., Stamponi A. An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum (Experimental’noe i chislennoe issledovanie gomogennogo vosplameneniya pri kataliticheski stabilizirovannom szhiganii smesi vodoroda/vozdushnoi smesi nad platinoi). Combustion and Flame, 2002;128(4)340–368 (in Eng.).

16. [16] Rinnemo M., Deutchmann O., Behrendt F., Kasemo B. Experimental and Numerical Investigation of the Catalytic Ignition of Mixtures of Hydrogen and Oxygen on Platinum (Experimental’noe i chislennoe issledovanie kataliticheskogo szhiganiya smesi vodoroda I kisloroda na platine). Combustion and Flame, 1997;111(4)312–326 (in. Eng.).

17. [17] Schefer R.W. Catalyzed Combustion of H2/Air Mixtures in a Flat Plate Boundary Layer: II. Numerical Model (Katalizirovannoe szhiganie vodorodo/vozdushnykh smesei v ploskom pogranichnom sloe: II. Chislennaya model’). Combustion and Flame, 1982;45:171–190 (in Eng.).

18. [18] Frank-Kamenetskii D.A. Diffusion and heat transfer in chemical kinetics (Diffuziya i teploperedacha v khimicheskoi kinetike). Moscow: Nauka Publ., 1987;502 (in Russ.).

19. [19] Ensuring hydrogen explosion protection at the Nuclear Power Plant (Pravila obespecheniya vodorodnoi vzryvozashchity na atomnoi stancii). 2002;NP-040-02 (in Russ.).

20. [20] Solov’ev S.L., Mikhal’chuk A.V., Avdeenkov A.V. Report of “Ensuring hydrogen explosion protection at the NPP with the boiling water reactor. Current state of the issue” (Otchet “Obespechenie vodorodnoi vzryvobezopasnosti na AES s korpusnnymi reaktorami pod davleniem. Sovremennoe sostoyanie voprosa”). JSC “VNIIAES”, 2017 (in Russ.).

21. [21] Passive catalytic hydrogen recombiner RVK-500, RVK-1000 (Passivnyi kataliticheskii recombinator vodoroda RVK-500, RVK-1000). Tekhnicheskie usloviya RET-111.00.000, 2007 (in Russ.).


Review

For citations:


Avdeenkov A.V., Sergeev V.V., Stepanov A.V., Malakhov A.A., Koshmanov D.Y., Soloviev S.L., Bessarabov D.G. HYDROGEN CATALYTIC RECOMBINER’S ENGINEERING MODEL FOR DYNAMIC FULL-SCALE CALCULATIONS. Alternative Energy and Ecology (ISJAEE). 2018;(4-6):37-56. (In Russ.) https://doi.org/10.15518/isjaee.2018.04-06.037-056

Views: 1657


ISSN 1608-8298 (Print)