

HYDROGEN CATALYTIC RECOMBINER’S ENGINEERING MODEL FOR DYNAMIC FULL-SCALE CALCULATIONS
https://doi.org/10.15518/isjaee.2018.04-06.037-056
Abstract
About the Authors
A. V. AvdeenkovRussian Federation
Ph.D. in Physics and Mathematics, Institute of Physics and Power Engineering (Russia); Deputy General Director of DST National Center; Extraordinary Professor at “HySA Infrastructure” of NorthWest University
Vl. V. Sergeev
Russian Federation
Senior Researcher
A. V. Stepanov
Russian Federation
Head of Laboratory
A. A. Malakhov
Russian Federation
EngineerResearcher
D. Y. Koshmanov
Russian Federation
S. L. Soloviev
Russian Federation
D.Sc. in Engineering, Supervisor
D. G. Bessarabov
South Africa
Ph.D. in Chemistry, DST National Center: HySA Infrastructure: Director, North-West University
References
1. [1] Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants (Smyagchenie opasnostei, svyazannykh s vodorodom pri tyazhelykh avariyakh na atomnykh elektrostantsiyakh), IAEA-TECDOC (IAEA), 2011;1661. Available on: https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1661_Web.p df (05.10.2017) (in Eng.).
2. [2] Hydrogen in Water – Cooled Nuclear Power Reactors (Vodorod v vodoohlazhdaemyh Jadernyh Jenergeticheskih Reaktorah), IAEA and CEC, 1992;EUR-14037 (in Eng.).
3. [3] Autocatalytic Recombinant Systems (Avtokataliticheskie Rekombinacionnye Systemy). Wasserstoffabbau SIEMENS AG(KWU), 1998;NDS9 (in Deu.).
4. [4] Ferroni F., Schiel L., Collins P. Containment protection with hydrogen recombiners (Protivoavariinaya zashchita v rekombinatorakh vodoroda). Atw. Atomwirtschaft, Atomtechnik, 1994;39(7)513–514 (in Deu.).
5. [5] Devit U.A., Koroll J.N., Luazel’-Sitar J. Development of a hydrogen recombiner in the “Atomic Energy of Canada Limited” company (AECL) (Razrabotka vodorodnogo rekombinatora v kompanii “Atomik Enerzhi of Kanada Limited”). Workshop OECD/NEA/CSNI “The Implementation of hydrogen mitigation techniques”, 1996;NEA/CSNI/R(96)9 (in Eng.).
6. [6] Passive catalytic hydrogen recombiner RVK-500 (Passivnyi kataliticheskii recombinator vodoroda RVK-500). Tekhnicheskie usloviya RET-101.00.000, 2004; (in Russ.).
7. [7] Passive catalytic hydrogen recombiner RVK-500, RVK-1000 (Passivnyi kataliticheskii recombinator vodoroda RVK-500, RVK-1000). Tekhnicheskie usloviya RET-101.00.000, 2005 (in Russ.).
8. [8] Anpilov S.V., Grigoruk D.G., Kondratenko P.S., Khristenko E.B., Chizhov M.E. Mathematical Modeling of Heat and Mass Transfer in a Passive Autocatalytic Recombiner (Matematicheskoe modelirovanie teplomasso perenosa v passivnom avtokataliticheskom rekombinatore). Thermal Engineering, 2013;60(11)818– 822 (in Russ.).
9. [9] Blanchat K. et al. Analysis of hydrogen depletion using a scaled passive autocatalytic recombiner (Analiz udaleniya vodoroda pri pomoschi masshabiruemykh passivnyh recombinatorov vodoroda). Nuclear Engineering and Design, 1999;187:229–239 (in Eng.).
10. [10] Reinecke E. Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors (Issledovanie perspektivnyh recombinatorov vodoroda kak sredstvo obespecheniya bezopasnosti kontainmentov legko-vodyanyh reaktorov). Nuclear Engineering and Design, 2004;230:49–59 (in Eng.).
11. [11] Meynet N. et al. Progress in PARs modeling for reactor application, 6th European Review meeting on Severe Accident Research (Progress v modelirovanii PKRV dlya reaktornyh prilozheni). ERMSAR-2013, Avignon (France), Palais des Papes, 2–4 October, 2013 (in Eng.).
12. [12] Reinecke E. et al., Open issues in the applicability of recombiner experiments and modelling to reactor simulations (Otkrytye voprosy primenimosti experimentov i modelirovaniya s rekombinatotami k reaktornomu modelirovaniyu). Progress in Nuclear Energy, 2010;52:136–147 (in Eng.).
13. [13] Program of work to eliminate comments from Rostekhnadzor to passive catalytic hydrogen recombiners (Approved by First Deputy Director General of OJSC “Rosenergoatom Concern” Asmolov V.G.) (Programma rabot po ustraneniyu zamechanii Rostechnadzora k passivnym kataliticheskim rekombinatoram vodoroda (Utverzhdena pervym zamestitelem General’nogo direktora OAO “Kontsern Rosenergoatom” Asmolovym V.G.), 2015 (in Russ.).
14. [14] Report of JSC “SSC RF-IPPE” on “Experimental research and justification of the design characteristics of hydrogen recombiners produced by ZAO NPK «RET» No 224/5.42.02-16/13141, contract No 5296 of July 18, 2016, Stage 7”; Analysis of performed tests to determine the characteristics of recombiners, Stage 1, No. 224/5.42.02-15/8055 (Otchet AO “GNC RF-FEI” po teme “Jeksperimental’nye issledovanija i obosnovanie proektnyh harakteristik recombinatorov vodoroda proizvodstva ZAO NPK “RET” №224/5.42.02-16/13141, dogovor №5296 Jetap 7”; Analiz vypolnennyh ispytanij po opredeleniju harakteristik rekombinatorov, Jetap 1, №224/5.42.02-15/8055), 2016 (in Russ.).
15. [15] Appel C., Mantzaras J., Schaeren R., Bombach R., Inauen A., Kaeppeli B., Hemmeling B., Stamponi A. An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum (Experimental’noe i chislennoe issledovanie gomogennogo vosplameneniya pri kataliticheski stabilizirovannom szhiganii smesi vodoroda/vozdushnoi smesi nad platinoi). Combustion and Flame, 2002;128(4)340–368 (in Eng.).
16. [16] Rinnemo M., Deutchmann O., Behrendt F., Kasemo B. Experimental and Numerical Investigation of the Catalytic Ignition of Mixtures of Hydrogen and Oxygen on Platinum (Experimental’noe i chislennoe issledovanie kataliticheskogo szhiganiya smesi vodoroda I kisloroda na platine). Combustion and Flame, 1997;111(4)312–326 (in. Eng.).
17. [17] Schefer R.W. Catalyzed Combustion of H2/Air Mixtures in a Flat Plate Boundary Layer: II. Numerical Model (Katalizirovannoe szhiganie vodorodo/vozdushnykh smesei v ploskom pogranichnom sloe: II. Chislennaya model’). Combustion and Flame, 1982;45:171–190 (in Eng.).
18. [18] Frank-Kamenetskii D.A. Diffusion and heat transfer in chemical kinetics (Diffuziya i teploperedacha v khimicheskoi kinetike). Moscow: Nauka Publ., 1987;502 (in Russ.).
19. [19] Ensuring hydrogen explosion protection at the Nuclear Power Plant (Pravila obespecheniya vodorodnoi vzryvozashchity na atomnoi stancii). 2002;NP-040-02 (in Russ.).
20. [20] Solov’ev S.L., Mikhal’chuk A.V., Avdeenkov A.V. Report of “Ensuring hydrogen explosion protection at the NPP with the boiling water reactor. Current state of the issue” (Otchet “Obespechenie vodorodnoi vzryvobezopasnosti na AES s korpusnnymi reaktorami pod davleniem. Sovremennoe sostoyanie voprosa”). JSC “VNIIAES”, 2017 (in Russ.).
21. [21] Passive catalytic hydrogen recombiner RVK-500, RVK-1000 (Passivnyi kataliticheskii recombinator vodoroda RVK-500, RVK-1000). Tekhnicheskie usloviya RET-111.00.000, 2007 (in Russ.).
Review
For citations:
Avdeenkov A.V., Sergeev V.V., Stepanov A.V., Malakhov A.A., Koshmanov D.Y., Soloviev S.L., Bessarabov D.G. HYDROGEN CATALYTIC RECOMBINER’S ENGINEERING MODEL FOR DYNAMIC FULL-SCALE CALCULATIONS. Alternative Energy and Ecology (ISJAEE). 2018;(4-6):37-56. (In Russ.) https://doi.org/10.15518/isjaee.2018.04-06.037-056