

COMPARISON OF SPECIFIC ENERGY CONSUMPTION IN RECONDENSATION CYCLES FOR HYDROGEN VAPORS UTILIZATION IN CRYOGENIC SYSTEMS OF FILLING STATIONS
https://doi.org/10.15518/isjaee.2018.04-06.057-069
Abstract
About the Authors
I. A. ArkharovRussian Federation
D.Sc. in Engineering, Full Professor in the Department of Refrigerating and Cryogenic Equipment, Conditioning and Life Support Systems of Bauman Moscow State Technical University, Vice-President of the commission A1 of the International Institute of Refrigeration (IIR, France)
A. M. Arkharov
Russian Federation
D.Sc. in Engineering, Full Professor in the department of Refrigerating and Cryogenic Equipment, Conditioning and Life Support Systems of Bauman Moscow State Technical University
E. S. Navasardyan
Russian Federation
Ph.D. in Engineering, Associate Professor in the Department of Refrigerating and Cryogenic Equipment, Conditioning and Life Support Systems of Bauman Moscow State Technical University
References
1. [1] Soroko-Novitskiy V.I., Petrov V.A. Light Fuel Engines (Dvigateli legkogo topliva). Moscow: ONTINKTP. 1938 (in Russ.).
2. [2] Aleksandrov A.A., Arkharov I.A., Bagrov V.V. [et al.]. Alternative fuels for internal combustion engines (Alternativnyie topliva dlya dvigateley vnutrennego sgoraniya). Moscow: OOO NITs “Inzhener” Publ., 2012 (in Russ.).
3. [3] Gamburg D.U. Hydrogen. Properties, reception, storage, transportation, application (Vodorod. Svoystva, poluchenie, hranenie, transportirovanie, primenenie). Moscow: Himiya Publ., 1989 (in Russ.).
4. [4] Domashenko A.M., Gorbatskiy Yu.V Liquid hydrogen in the problem “Hydrogen energy” (Zhidkiy vodorod v probleme “Vodorodnaya energetika”). Energiya: ekonomika, tehnika, ekologiya. 2006;7:13–19 (in Russ.).
5. [5] Domashenko A., Golovchenko A., Gorbatsky Yu. et all. Production, storage and transportation of liquid hydrogen. Experience of infrastructure development and operation. International Journal of Hydrogen Energy. 2002;27(7–8):753–755 (in Eng.).
6. [6] Peschka W. Liquid Hydrogen. Fuel of future. Wien: Springer-Verlag, 1992 (in Eng.).
7. [7] Fleck U., Kundig A. Liquid hydrogen - a clean energy? Available on: http://www.linde-engineering.pt/en/ (02.12.2107) (in Eng.).
8. [8] Gavrilyuk A. Hydrogen energy for beginners. Pan Stanford, 2013 (in Eng.).
9. [9] Kinard G.E. The commercial use of Liquid Hydrogen Over The Last 40 Years. Proceedings of the 17th International Cryogenic Engineering Conference, Bournemouth, UK, Institute of Physics, 1998 (in Eng.).
10. [10] Iwamoto K. Theoretical Calculation of the Large Hydrogen Liquefaction Process. Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference, 1997, pp. 155–158 (in Eng.).
11. [11] Strobridge T.R. Cryogenic refrigerators-an updated survey. U.S. Dept. of Commerce, National Bureau of Standards, 1974; 11 p. (in Eng.).
12. [12] Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode. International Journal of Hydrogen Energy, 2007;32:268–286 (in Eng.).
13. [13] Wang Sh., Lu G.Q.M. CO2 reforming of methane on Ni catalysts: Effects of the support phase and preparation technique. Applied Catalysis B: Environmental, 1998;16(3):269–277 (in Eng.).
14. [14] Ogden J.M., Yang C, Nicolas M.A. Technical and Economic Assessment of Regional Hydrogen Transition Strategies. Available on: https://escholarship.org/uc/item/46f8215p#metrics (accessed 02.11.2017) (in Eng.).
15. [15] Krasae-in S, Stang J., Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. International Journal of Hydrogen Energy, 2010;35:4524–4533 (in Eng.).
16. [16] Bischoff S., Decker L. First operating results of a dynamic gas bearing turbine in an industrial hydrogen liquefier. Advances in Cryogenic Engineering, 2017;55:887–894 (in Eng.).
17. [17] Ohira K. A Summary of liquid hydrogen and cryogenic technologies in Japan’s. WE-NET Project. Proc. of the Cryogenic Engineerring Conference, 2004,49:27–34 (in Eng.).
18. [18] Leachman J., Jacobsen R., Penoncello S., Lemmon E. Fundamental EOS for Parahydrogen, Normal Hydrogen and Orthohydrogen. J. Phys. Chem. Ref. Data, 2009;38(3):721–748 (in Eng.).
19. [19] Streett W., Jones C. Liquid Phase Separation and Liquid–Vapor Equilibrium in the System Neon–Hydrogen. J. Chem. Phys., 1965;42(11):3989–3994 (in Eng.).
20. [20] Heck C., Barrick P. Liquid-vapor phase equilibria of the neon-normal hydrogen system. Cryogenic Engineering, 1965;11:349–355 (in Eng.).
21. [21] Quack H. Conceptual design of a high efficiency large capacity hydrogen liquefier. Proc. of the Cryogenic Engineering Conference Madison, 2001;47A:255–263 (in Eng.).
22. [22] Integrated Design for Efficient Advanced Liquefaction of Hydrogen. Available on: http://www.fch.europa.eu/project/integrated-design-efficient-advanced-liquefaction-hydrogen (accessed 01.10.2017) (in Eng.).
23.
24. [23] Couper J., Dekker М. Process Engineering Economics. New York: CRC Press, 2003 (in Eng.).
25. [24] Cardella U., Decker L., Klein H. Economically viable large-scale hydrogen liquefaction. Available on: http://iopscience.iop.org/article/10.1088/1757-899X/171/1/012013/pdf (accessed 15.09.2017) (in Eng.).
26. [25] Russell B.S. Cryogenic engineering. Princeton: Met Chemical Research, 1988 (in Eng.).
27. [26] Arkharov I.A., Aleksandrov A.A., Navasardyan E.S. Theory and calculation of cryogenic system cycles (Teoriya i raschet tsiklov kriogennykh sistem). Moscow: MGTU lm. N.E. Baumana, 2009 (in Russ.).
28. [27] Arkharov I.A., Aleksandrov A.A., Navasardyan E.S. Examples and tasks on cryogenic system cycles (Primery i zadachi po tsiklam kriogennykh sistem). Moscow: MGTU lm. N.E. Baumana, 2009 (in Russ.).
29. [28] Aleksandrov A.A., Arkharov I.A., Navasardyan E.S. Machines and apparatuses of cryogenic systems (Mashiny i apparaty kriogennykh system). Moscow: MGTU lm. N.E. Baumana, 2014 (in Russ.).
30. [29] Aleksandrov A.A., Arkharov I.A., Navasardyan E.S. Machines and apparatuses of cryogenic systems (Mashiny i apparaty kriogennykh system). Moscow: MGTU lm. N.E. Baumana, 2009 (in Russ.).
31. [30] Frederking T.H.K. Cryogenics: low temperature engineering and applied science. Santa Monica, Calif.: Yutopian Enterprises, 2005 (in Eng.).
32. [31] Arkharov A.M., Marfenina I.V., Mikulin Ye.I. Cryogenic systems in vol. 1, vol. 2. Bauman Moscow State Technical University Press, 2000, 2001 (in Eng.).
33. [32] Timmerhaus K.D., Reed R.P. Cryogenic engineering. Wien: Springer-Verlag, 2007 (in Eng.).
34. [33] Morkovkin I.M., Kuzmenko I.F., Kashonkova E.A., Dukhanin Yu.I., Gurov E.I. A method for liquefying hydrogen with a helium refrigerant cycle and a device for carrying it out. Patent F25J1/02; F25J5/00 RF no. 2309342 (Sposob ozhizheniya vodoroda s gelievym kholodil'nym tsiklom i ustroistvo dlya ego osushchestvleniya). 27.10.2007 (in Russ.).
35. [34] Hydrogen liquefier. Cryogenic helium plants (Оzhizhitel vodoroda. Kriogennye gelievye ustanovki). Available on: http://www.geliymash.ru/products/124/540/ (accessed 22.11.2017) (in Russ.).
36. [35] Range of automatic hydrogen liquefiers. Available on: https://advancedtech.airliquide.com/sites/abt_at/files/201 7/10/20/hylial_brochure_en_09.17_sd.pdf (accessed 22.11.2017) (in Eng.).
37. [36] West J.E. The economics of small to medium liquid hydrogen facilities. CryoGas International, 2003;May:28–33 (in Eng.).
Review
For citations:
Arkharov I.A., Arkharov A.M., Navasardyan E.S. COMPARISON OF SPECIFIC ENERGY CONSUMPTION IN RECONDENSATION CYCLES FOR HYDROGEN VAPORS UTILIZATION IN CRYOGENIC SYSTEMS OF FILLING STATIONS. Alternative Energy and Ecology (ISJAEE). 2018;(4-6):57-69. (In Russ.) https://doi.org/10.15518/isjaee.2018.04-06.057-069