

HEAT FLUX IN A PASSIVE MULTI-LAYERED SOLAR PANEL
https://doi.org/10.15518/isjaee.2018.07-09.055-062
Abstract
The paper deals with the question concerning the increase in buildings and structures energy efficiency and environmental safety at the construction and installation of engineering systems with financial constraints. We suggest solving this problem with low-cost method of solar radiation utilization which implies the passive thermal energy transformation into external fencing structures. In spite of the economic expedience of such heating systems, there is an opinion that they are suitable only for climatic conditions characterized by a mild heating period due to low efficiency indicators in comparison with the active solar power plant. As regards this, the paper analyzes the well-known and new building translucent, absorbing, accumulating and insulating materials along with the possibilities to create the multifunctional external fences that can expand the geography of the use of passive systems. We have studied the nonstationary thermal processes arising in multilayer external fences of buildings in order to solve the problems of effective solar radiation utilization by facade integrated panels. The analysis of mathematical methods has shown that theory of thermal waves should be used to describe the diurnal temperature changes inside building structures. The principle of temperature frequency superposition principle has made it possible to calculate the heat transfer in multilayer external panes. In Voronezh region climatic conditions (52º), we have evaluated the solar radiation effect on a two-layer and a four-layer structure consisting of a glass unit, an air layer, reinforced concrete and heater, protected from the outside by double-glass unit. In January at temperature -24 °C of the coldest fiveday period, the average daily heat losses through the surface area of 1 m2 of the two-layer outer wall are 6 W / m2 , and under the same weather conditions an average heat flux through the surface area of 1 m2 of the four-layer solar panel is of 36.3 W / m2 ; the maximum values of the heat flux are achieved in 18 hours. The presented data confirm the expedience of passive solar panels use in case of low temperatures during the cold period of a year. Moreover, considering the facade glazing trends and low cost of the passive solar panels in contrast with the active solar systems, we concluded that they should be used for increase in energy efficient of buildings.
About the Authors
R. A. ShepsRussian Federation
Assistant at the Department of Housing and Communal Services
P. A. Golovinsky
Russian Federation
D.Sc. in Physics and Mathematics, Professor of the Department of Innovation and Building Physics, Voronezh State Technical University; worked as a Visiting Professor at the University Laval (Quebec, Canada), Laboratory of Atomic and Molecular Physics Emmy Cotton (Orsay, France) etc
T. V. Shchukina
Russian Federation
Ph.D. in Engineering, Associate Professor, Head of the Department of Housing and Communal Services
S. A. Yaremenko
Russian Federation
PhD. in Engineering, Professor of the Department of Housing and Communal Services
References
1. Daffni Dzh., Bekman U. The basics of solar power system (Osnovy solnechnoi teploenergetiki). Dolgoprudnyi, Izd. Dom. “Intellekt”, 2013 (in Russ.).
2. Petrov V.M. Estimation of solar energy input on the surface of active facade integrated power supply systems (Otsenka postupleniya solnechnoi energii na poverkhnosti aktivnykh fasadno-integrirovannnykh sistem energosnabzheniya). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;11:8591 (in Russ.).
3. Quesada G. Rousse D., Dutil Y., Balache M., Hallé S. A comprehensive review of solar facades. Transparent and translucent solar facades. Renewable and Sustainable Energy Reviews, 2012;16(5): 2643–2651.
4. Navarro L., De Grasia A., Niall D., Castell A., Browne M., McCormack S.J., Griffiths P., Gabeza L.F. Thermal energy storage in building integrated thermal systems. A review: Part. 2. Integration as passive system. Renewable Energy, 2015;30:1–23.
5. Zhou Ao, Wong K.-W., Lau D. Thermal insulating concrete wall panel design for sustainable built environment. The Scientific World Journal, 2014; 12:ID 279592.
6. Skujans J., Vulans A., Iljins U., Aboltins A. Measurement of heat transfer of multy-layered wall construction with foam gypsum Appl. Thermal Eng., 2007;27:1219–1224.
7. Shchukina T.V., Sheps R.A., Kuznetsova N.V. Passive solar heating: how to control heating regime. Int. J. of Environmental and Science Education, 2016;11(18):11361–11373.
8. Bogoslovskii V.N. Building thermal physics (Stroitel'naya teplofizika). Moscow, Vysshaya shkola Publ., 1982 (in Russ.).
9. Tikhonov A.N., Samarskii A.A. Equations of mathematical physics (Uravneniya matematicheskoi fiziki). Moscow, MGU, 1999 (in Russ.).
10. Kharkevich A.A. Spectra and analysis (Spektry i analiz). Moscow, Izd-vo LKI, 2007 (in Russ.).
11. SP 50.13330.2012. Thermal protection of buildings (Teplovaya zashchita zdanii. Svod pravil. – Vved 2013-07-01). Moscow, Ministerstvo regional'nogo razvitiya RF, 2012 (in Russ.).
12. Boriskina I.V., Plotnikov A.A., Zakharov A.V. Design of modern window systems of civil buildings Proektirovanie sovremennykh okonnykh sistem grazhdanskikh zdanii. Moscow, Izdatel'stvo ASV Publ., 2003 (in Russ.).
13. Shchukina T.V., Chudinov D.M. Research of efficiency of power active protections for passive solar heating (Issledovanie effektivnosti energoaktivnykh ograzhdenii dlya passivnogo solnechnogo otopleniya). Promyshlennaya energetika, 2007;8:52–54 (in Russ.).
14. Akulova I.I. Forecasting the dynamics and structure of housing construction in the region (Prognozirovanie dinamiki i struktury zhilishchnogo stroitel'stva v regione) / I.I. Akulova; Federal'noe agentstvo po obrazovaniyu, Voronezhskii gosudarstvennyi arkhitekturno-stroitel'nyi universitet. Voronezh, 2007 (in Russ.).
15. Shchukina T.V. Solar heat supply of buildings and structures (Solnechnoe teplosnabzhenie zdanii i sooruzhenii). Voronezh: VGASU – 2007 (in Russ.).
16. Turulov V.A. Solar active walls of buildings (Gelioaktivnye steny zdanii). Moscow, Izdatel'stvo ASV, 2011 (in Russ.).
17. Shchukina T.V. Absorptive capacity of external building barriers for passive use of solar radiation (Pogloshchayushchaya sposobnost' naruzhnykh ograzhdenii zdanii dlya passivnogo ispol'zovaniya solnechnogo izlucheniya). Promyshlennoe i grazhdanskoe stroitel'stvo, 2012;(9):66–68 (in Russ.).
18. Shchukina T.V. Passive use of solar energy for energy-saving operation of buildings (Passivnoe ispol'zovanie solnechnoi energii dlya energosberegayushchei ekspluatatsii zdanii). Materiali za VIII mezhdunarodna nauchna praktichna konferentsiya “Klyuchovi v"prosi v s"vremennata nauka”, 17–25 April 2012. Vol. 29: Matematika. Zdanie i arkhitektura. – Sofiya.: „Byal GRAD-BG“ OOD, 2012, pp. 53–59 (in Russ.).
19. Shchukina T.V., Polosin I.I., Sheps R.A., Karavaeva Ya.I. Solar heat collector (Solnechnyi teplovoi kollektor). Pat. 2604119 RF, MKI F24J 2/24, F24J 2/34, F24J 2/14, F24J 2/16. opubl. 10.09.2016.; Bul. 25 (in Russ.).
20. Turchin N. Nonstationary axisymmetric temperature field in a two-layer slab under mixed heating conditions. J. of Eng. Phys. and Thermophysics, 2015;88(5): 1135–1144.
21. Mors F.M., Feshbakh G. Methods of theoretical physics (Metody teoreticheskoi fiziki). Moscow, IIL, 1960. Vol. 2 (in Russ.).
22. Met'yuz Dzh., Fink K.D. Numerical method. The use of MATLAB (Chislennye metody. Ispol'zovanie MATLAB). Moscow, Izd. Dom “Vil'yams”, 2001 (in Russ.).
23. Takhar H.S., Chamkha A.J., Nath G. Effects of non-uniform wall temperature and mass transfer infinite section of an inclined plate on the MDH natural convection flow in a temperature stratified high-porosity medium. Int. J. Therm. Sc., 2003;42:829–836.
24. Aksenov B., Karyakina S., Stepanov O., Shapoval A., Bodrov M. Mathematical modeling of temperature field of multilayer enclosure structures. MATEC Web of Conference, 2016;73:02023.
25. Aliawdin P., Marcinovski J., Wilk P. Theoretical and experimental analysis of heat transfer in the layers of road pavement. Civil and Environmental Engineering Reports, 2005;1:7–18.
26. Nguyen C.H., Chandrashekharra K., Birman V. Multifunctional thermal barrier coating in aerospace sandwich panels. Mechanics Research Communications, 2012;32:35043.
27. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Basic differential equations of mathematical physics (Osnovnye differentsial'nye uravneniya matematicheskoi fiziki). Moscow, GIFML, 1962. (in Russ.).
28. Dech G. Rukovodstvo k prakticheskomu preobrazovaniyu Laplasa. Moscow, Nauka Publ., 1965 (in Russ.).
29. Karslou G., Eger D. (Teploprovodnost' tverdykh tel). Moscow, NaukaPubl., 1964 (in Russ.).
30. Fu J.W., Akbarzadeh A.H., Chen Z.T., Qian L.F., Pasini D. Non-Fourier heat conduction in sandwich panel with a cracked foam. Int. J. Therm. Sciences, 2016;102:263–273.
Review
For citations:
Sheps R.A., Golovinsky P.A., Shchukina T.V., Yaremenko S.A. HEAT FLUX IN A PASSIVE MULTI-LAYERED SOLAR PANEL. Alternative Energy and Ecology (ISJAEE). 2018;(7-9):55-62. (In Russ.) https://doi.org/10.15518/isjaee.2018.07-09.055-062