Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

CHEMICAL CO2-RESISTIVITY OF PROTON CONDUCTORS ON BASE OF Ba4Ca2Nb2O11 AND La6WO12

https://doi.org/10.15518/isjaee.2018.10-12.043-059

Abstract

In order to create an efficient fuel cell based on a high-temperature proton conductor, it is necessary to develop a long-lived proton electrolyte. In the general case, the long-term chemical stability of the phase to CO2 is provided by thermodynamics (impossibility of reaction) or interaction kinetics (slowing down of the reaction). The paper compares the chemical stability with respect to CO2 (both thermodynamic and related to kinetic difficulties) for promising high-temperature proton conductors based on double perovskite Ba4-xCa2+xNb2O11 (x = 0.4; 0 ; –0.4) and double fluorite La6-xWO12-1.5 (x = 0.4, 0.6, 0.8, 1). The temperature of resistance to CO2 (above which the phase is stable to CO2, below which the phase interacts with CO2) is an important technical characteristic of the thermodynamic stability of the phase to CO2. The upper limit of the operating temperatures of the solid oxide fuel cell is 1,000ºC. When the temperature of stability is the lower, then the phase is more stable to CO2. We use solid-phase synthesis, X-ray diffraction, thermogravimetry with mass spectrometry and conductivity measurement by the impedance method. It is established that materials based on La6WO12 are relatively thermodynamically stable in ordinary air with CO2 (10-3 bar) in the operating range of 650–1,000 ºC. The phases based on Ba4Ca2Nb2O11 are resistant to CO2 in the air in the range of 850–1,000 ºC. In order to use the material in conditions of its thermodynamic stability, the stability temperature is required to be below the operating temperature (400–700 ºC). Thus, phases based on Ba4Ca2Nb2O11 are thermodynamically unstable to CO2 at 700ºC, and phases based on La6WO12 are stable at 700ºC. In the absence of thermodynamic stability of the phase, stability of this phase to CO2, associated with the kinetic difficulties, may be revealed in some cases, which is sufficiently long-term for practical use. For example, it is possible to form a continuous diffusion-blocking surface layer of products of interaction with CO2 (Ba, Ca, La carbonates) at the grain boundary of the main phase. The increase in the grain-boundary resistance observed for the studied samples may indicate the formation of a surface layer of products of interaction with CO2. For ceramic samples La6-xWO12-1.5x (x = 0.4, 0.6, 0.8, 1), the grain-boundary and electrode resistance after aging for 30 days at 200ºC in moist atmospheric air (CO2 10-3 bar) is shown to increase approximately 3 times at 800ºC and 10 times at 400 ºC.

About the Authors

D. V. Korona
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Daniil Korona – Junior Researcher of the Department of Chemical Materials Science of the Institute of Natural Sciences and Mathematics, Ural Federal University named after the first President of Russia B.N. Yeltsin

19 Mira St., Yekaterinburg, 620002



G. S. Partin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Grigory Partin – Postgraduate

19 Mira St., Yekaterinburg, 620002



I. Е. Animitsa
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Irina Animitsa – D.Sc. in Chemistry, Professor

19 Mira St., Yekaterinburg, 620002



A. R. Sharafutdinov
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Albert Sharafutdinov Ph.D. in Chemistry, Researcher

19 Mira St., Yekaterinburg, 620002



References

1. Kawasaki Y., Okada S., Ito N., Ishihara T. Proton conduction and chemical stability of (La0.5Sr0.5)(Mg0.5+yNb0.5-y)O3-d. Materials Research Bulletin, 2009; 44(2):457–461.

2. Pasierb P., Gajerski R., Osiadly M., Lacz A. Application of DTA-TG-MS for determination of chemical stability of BaCeO3-δ based protonic conductors. Thermal Analisys and Calorimetry, 2014;117(3):683–691.

3. Lin B., Zhang S., Zhang L., Bi L., Ding H., Liu X., Gao J. and Meng G. Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3-d electrolyte-based protonic ceramic membrane fuel cells with Ba0.5Sr0.5Zn0.2Fe0.8O3-d perovskite cathode. Journal of Power Sources, 2008;183(2):479–484.

4. Fabbri E., D'Epifanio A., Di Bartolomeo E., Licoccia S., Traversa E. Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (ITSOFCs). Solid State Ionics, 2008;179(15–16):558–564.

5. Shin J.F., Slater P.R. Enhanced CO2 stability of oxyanion doped Ba2In2O5 systems co-doped with La, Zr. Journal of Power Sources, 2011;196(20):8539–8543.

6. Murugaraj P., Kreuer K.D., He T., Schober T., Maier J. High proton conductivity in barium yttrium stannate BaYSnO5,5. Solid state ionics, 1997;98(1):1–6.

7. Smith A.D., Slater P.R. Investigation into the incorporation of phosphate into BaCe1−yAyO3−y/2 (A = Y, Yb, In), Inorganics, 2014;2(1):16–28.

8. Magraso A., Frontera C., Gunnæs A. E., Tarancón A., Marrero-López D., Norby T., Haugsrud R. Structure, chemical stability and mixed proton–electron conductivity in BaZr0.9−xPrxGd0.1O3−I. Journal of Power Sources, 2011;196(22):9141–9147.

9. Bhella S.S., Thangadurai V. Synthesis and characterisation of carbon dioxide and boiling water stable proton conducting double perovskite-type metal oxides. Journal of Power Sources, 2009;186(2):311–319.

10. Lu J. Chemical stability of doped BaCeO3– BaZrO3 solid solutions in different atmospheres. Journal of Rare Earth, 2008;26(4):505–510.

11. Medvedev D., Lyagaeva J., Plaksin S., Demin A., Tsiakaras P. Sulfur and carbon tolerance of BaCeO3– BaZrO3 proton-conducting materials. Journal of Power Sources, 2015;273(4):716–723.

12. Medvedev D., Murashkina A., Pikalova E., Demin A., Podias A., Tsiakaras P. BaCeO3: Materials development, properties and application. Progress in Materials Science, 2014;60(1):72–129.

13. Kakinuma K. Yamamura H., Haneda H., Atake T. Oxide-ion conductivity of (Ba1-xLax)2In2O5+x system based on brownmillerite structure. Solid State Ionics, 2001;140(3–4):301–306.

14. Stroeva A.Yu., Balakireva V.B., Dunyushkina L.A., Gorelov V.P. Electroconductivity and nature of ionic transport in system of La1-xSrxSc1-yMgyO3-α (0,01≤x=y≤0,20) in dry and wet air (Elektroprovodnost' i priroda ionnogo perenosa v sisteme La1-xSrxSc1-yMgyO3-α (0,01≤x=y≤0,20) v sukhom i vlazhnom vozdukhe). Elektrokhimiya, 2010;46(5):585–593 (in Russ.).

15. Haugsrud R. Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 2007;178(7–10):555–560.

16. Yaroslavtsev A.B. Basic directions of development and research of solid electrolytes (Osnovnye napravleniya razrabotki i issledovaniya tverdykh elektrolitov). Uspekhi khimii, 2016;85(11):1255–1276 (in Russ.).

17. Malavasi L., Fisher C. A. J. and Islam M. S. Oxideion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Revue, 2010;39(11):4370–4387.

18. Ma G., Wen Z., Han J., Zhang J., Wen Y. Enhanced proton conduction of BaZr0.9Y0.1O3-δ by hybrid doping of ZnO and Na3PO4. Solid State Ionics, 2015;281(1):6–11.

19. Schober T. Composites of ceramic hightemperature proton conductors with inorganic compounds. Electrochemical and Solid-State Letters, 2005;8(4):199–200.

20. Shilkina L.A., Reznichenko L.A., Razumovskaya O.N., Dudkina S.I., Vlasenko V.G., Shevtsova S.I., Guglev K.A., Kozakov A.T., Nikol'skii A.V. Effects of doping lead titanate with alkaline earth elements (Effekty legirovaniya titanata svintsa shchelochnozemel'nymi elementami). Fizika tverdogo tela, 2016;58(1):114–124 (in Russ.).

21. Gorelov V.P., Balakireva V.B., Kuz'min A.V. Ionic, proton and oxygen-ion conductivities in system of BaZr1 – xYхO3 – α (х = 0.02–0.15) in wet air (Ionnaya, protonnaya i kislorodnaya provodimosti v sisteme BaZr1 – xYхO3 – α (х = 0.02–0.15) vo vlazhnom vozdukhe). Elektrokhimiya, 2010;46(8):948–953 (in Russ.).

22. Tret'yakov Yu.D. Solid state reactions (Tverdofaznye reaktsii).– M.: Khimiya, 1978 (in Russ.).

23. Buyanova E.S., Emel'yanova Yu.V. Impedance spectroscopy of electrolytic materials: a training manual (Impedansnaya spektroskopiya elektroliticheskikh materialov: uch. posobie). Ekaterinburg: UrGU, 2008. – 70 р. (in Russ.).

24. Kalinina T.A., Lykova L.N., Kovba L.M., Mel'nikova M.G., and Porotnikov N. V. Phase diagrams of BaO-In2O3 system. Russian Journal of Inorganic Chemistry, 1983;28(2):259–262.

25. Trunov V.K. Velikodnyi Yu.A., Makarevich L.G. The BaO-Nb2O5 system. Russian Journal of Inorganic Chemistry, 1979;24(5):737–739.

26. Shirsat A.N., Ali M., Kaimal K.N.G., Bharadwaj S.R., Das D. Thermochemistry of La2О2CO3 decomposition. Thermochimica Acta, 2003;399:167–170.

27. Ivanova M.M., Balagina G.M., and Rode E.Ya., The constitution diagram of the La2O3–WO3 system (Diagramma sostoyanoya sistemy La2O3–WO3). Inorganic Materials, 1970;6(5):803–805.

28. Chemical encyclopedia (Khimicheskaya entsiklopediya) / Ed.: Knunyants I.L. et al. Moscow: Sovetskaya entsiklopediya, 1988;1:623 p. (in Russ.).

29. Animitsa I. Neiman A., Kochetova N., Melekh B., Sharafutdinov A. Proton and oxygen-ion conductivity of Ba4Ca2Nb2O11. Solid State Ionics, 2003;162–163(1):63–71.

30. Magraso A., Polfus J. M., Frontera C., CanalesVazquez J., Kalland L.E., Hervoches C. H., Erdal, S., Hancke R., Islam M. S., Norby T. and Haugsrud R. Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. Journal of Material Chemistry, 2012;22(4):1762–1764.

31. Ivanova M.E., Seeger J., Serra J.M., Solis C., Meulenberg W.A., Fischer W., Roitsch S., Buchkremer H.P. Influence of the La6W2O15 phase on the properties and integrity of La6-xWO12-δ–based membranes. Chemistry and Materials Research, 2012;2(1):56–83.

32. Savin V.D., Mikhailova N.P., Eremenko Z.V. Oxidicarbonate compounds of rare earth metals (Oksikarbonatnye soedineniya redkozemel'nykh metallov). Zhurnal neorganicheskoi khimii, 1987;32(11):2662–2666 (in Russ.).


Review

For citations:


Korona D.V., Partin G.S., Animitsa I.Е., Sharafutdinov A.R. CHEMICAL CO2-RESISTIVITY OF PROTON CONDUCTORS ON BASE OF Ba4Ca2Nb2O11 AND La6WO12. Alternative Energy and Ecology (ISJAEE). 2018;(10-12):43-59. (In Russ.) https://doi.org/10.15518/isjaee.2018.10-12.043-059

Views: 659


ISSN 1608-8298 (Print)