Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

HOLOGRAPHIC SENSORS FOR DIAGNOSTICS OF COMPONENTS IN AQUEOUS SOLUTIONS AND BIOLOGICAL FLUIDS

https://doi.org/10.15518/isjaee.2018.10-12.105-124

Abstract

The review gives the main points of the current state of holographic sensors development based both on researches of foreign scientists and on the results of the only group in Russia dealing with this problem. Holographic sensors are a new class of diagnostic devices that are thick-layered holograms recorded instead of gelatin in a special hydrogel that reacts to the presence of certain substances in liquid and gas mixtures. The cross-links of the hydrogel matrix are tuned to the test component of the mixture, and the more the hydrogel layer of the sensor shrinks or swells, the higher the component concentration is. This mechanism makes it possible to quantify the concentration of a particular substance. The paper describes the main properties, advantages, measuring capabilities, and possible applications of the holographic sensors. In this case, water quality studies are very promising, both in urban water supply systems and for monitoring ecosystems in natural reservoirs. Moreover, with the holographic sensors it is possible to measure the hardness and acidity of water, as well as pollution with ions of heavy metals, bacteria and their spores, etc. To monitor the atmosphere, there are specially designed holographic sensors that allow determining the content of combustible hydrocarbon gases in air, and air humidity and temperature. The sensors can also be widely used in medicine in order to determine the concentrations of a wide range of compounds contained in biological fluids. The review discusses in detail the problems that arise when analyzing the level of glucose in blood plasma and serum and draws the comparison of holographic sensors with existing diagnostic tools. We consider the possibilities of using digital imaging technology, including smartphones, as an alternative to spectrometric registration of the sensor response because, compared with spectrometers, widespread digital photographic equipment significantly simplifies the measurements and reduces their cost. This is very important for the operative monitoring of environmental parameters, especially in the field. The review details the problems of measuring the wavelength of the light reflected from the sensor for different types of data available in digital cameras (image formats). Based on the arguments available in the literature, the authors substantiate the importance of designing holographic sensors for the growing sector of the express diagnostic market in practical medicine.

About the Authors

A. V. Kraiski
P.N. Lebedev Physical Institute of RAS
Russian Federation

Aleksandr Kraiski – Ph.D. in Physics and Mathematics, Senior Researcher

53 Leninskiy Av., Moscow, 119991



V. A. Postnikov
Kurnakov Institute of General and Inorganic Chemistry of RAS
Russian Federation

Vladimir Postnikov – Ph.D. in Chemistry, Leading Researcher

31 Leninsky Av., Moscow, 119071



Т. V. Mironova
P.N. Lebedev Physical Institute of RAS
Russian Federation

Tatiana Mironova – Ph.D. in Physics and Mathematics, Scientific Researcher

53 Leninskiy Av., Moscow, 119991



A. A. Kraiski
P.N. Lebedev Physical Institute of RAS
Russian Federation

Aleksandr Kraiski – Ph.D. in Physics and Mathematics, Senior Researcher

53 Leninskiy Av., Moscow, 119991



М. A. Shevchenko
P.N. Lebedev Physical Institute of RAS
Russian Federation

Mikhail Shevchenko – Junior Researcher

53 Leninskiy Av., Moscow, 119991



M. A. Kazaryan
P.N. Lebedev Physical Institute of RAS
Russian Federation

Mishik Kazaryan – D.Sc. in Physics and Mathematics, Leading Researcher

53 Leninskiy Av., Moscow, 119991



References

1. Lowe C.R., Millington R.B., Blyth J., Mayes A.G. Hologram used as a sensor: WO Patent Application 1995026499 A1 / – October 5, 1995.

2. Millington R.B., Mayes A.G., Blyth J., Lowe C.R. Holographic sensor for Proteases. Anal. Chem., 1995;67:4229–4233.

3. Mayes A.G., Blyth J., Kyrollo1inen-Reay M., Millington R., Lowe C. A holographic alcohol sensor. Anal. Chem., 1999;71:3390–3396.

4. Toal V. Introduction to Holography. CRC Press: Boca Raton. FL, 2011, 441 p.

5. Kraiskii A.V., Postnikov V.A., Sultanov T.T., Khamidulin A.V. Holographic sensors for diagnostics of solution components (Golograficheskie sensory dlya diagnostiki komponentov rastvorov). Quantum Electronics, 2010;40(2)178–182 (in Russ).

6. Postnikov V.A., Kraiskii A.V., Sergienko V.I. Holographic Sensors for Detection of Components in Water Solutions: in book “Holography – Basic Principles and Contemporary Applications”, 2013. – Dr. Emilia Mihaylova (Ed.). InTech. – Rijeka, pp. 103–128; DOI: 10.5772/53564.

7. Mihaylova E., Cody D., Naydenova I., Martin S., Toal V. Research on Holographic Sensors and Novel Photopolymers at the Centre for Industrial and Engineering Optics: in book “Holography – Basic Principles and Contemporary Applications”, 2013, – Dr. Emilia Mihaylova (Ed.). InTech. – Rijeka, pp. 89–102; DOI: 10.5772/56061.

8. Yetisen A.K., Naydenova I., da Cruz Vasconcellos F., Blyth J., Lowe C.R. Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications. Chem. Rev., 2014;114(20):10654–96.

9. Yetisen A.K., Yetisen A.K., Butt H., Volpatti L. R., Pavlichenko I., Humar M., Kwok Sh.J.J., Koo H., Kim K.S., Naydenova I., Khademhosseini A., Hahn S.K., Yun S.H. Photonic hydrogel sensors. Biotechnol. Adv., 2016;34(3):250–271.

10. Zawadzka M., Mikulchyk T., Cody D., Martin S., Yetisen A.K., Martinez-Hurtado J.L., Butt H., Mihaylova E., Awala H., Mintova S., Yun S.H., Naydenova I. Photonic Materials for Holographic Sensing: in M.J. Serpe (eds.). Photonic Materials for Sensing, Biosensing and Display Devices, Springer Series. Materials Science. 2016;229; DOI 10.1007/978-3-319-249902_11.

11. Steblina Yu.V. Solution of urgent problems of express diagnostics (Reshenie aktual’nyh zadach ekspress-diagnostiki) [E-resource]. Available on: https://www.fedlab.ru/upload/medialibrary/c2f/steblinayuv-_ekspress_diagnostika.-rostov_na_donu-02-iyunya2015.pdf (21.02.18) (in Russ.).

12. Holtz J., Asher S. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997;389:829–832.

13. In Vitro Diagnostics/IVD Market by Product, Application – Forecast to 2021 [E-resource]. – Available on: https://www.marketsandmarkets.com/Market-Reports/ivdinvitro-diagnostics-market-703.html (21.02.18).

14. Kraiski A.A., Kraiskii A.V. Determination of the parameters of a holographic layer by its spectral characteristic (Opredelenie parametrov golograficheskogo sloya po ego speltral’nam harakteristikam). Quantum electron, 2016;46(6):558–566; DOI: 10.1070/QEL14915 (in Russ.).

15. Staselko D.I. Yury Nikolaevich Denisyuk and three-dimensional optical holography (Yurii Nikolaevich Denisyuk i trekhmernaya opticheskaya golografiya) // Kak eto bylo. Vospominaniya sozdatelei otechestvennoi lazernoi tekhniki: Ch. 3 pod red. I.B. Kovsh. Moscow: Lazernaya assotsiatsiya, 2011 (in Russ.).

16. Mayes A.G., Blyth J., Davidson C.A.B., Lowe Ch.R. Metal Ion-Sensitive Holographic Sensors. Anal. Chem., 2002;74(15):3649–3657; DOI: 10.1021/ac020131d.

17. Marshall A.J., Blyth J., Millington R.B., Lowe Ch.R. pH-Sensitive Holographic Sensors. Anal. Chem., 2003;75(17): 4423–4431; DOI: 10.1021/ac020730k

18. Kabilan S., Blyth J., Lee M.C., Marshall A.J., Hussain A., Yang X.-P., Lowe C.R. Glucose-sensitive holographic sensorsy. J. Mol. Recognit., 2004;17:162– 166; DOI:10.1002/jmr.663.

19. Yang X., Pan X., Blyth J., Lowe C.R. Towards the real-time monitoring of glucose in tear fluid: Holographic glucose sensors with reduced interference from lactate and pH. Biosensors and Bioelectronics, 2008;23:899–905.

20. Bhatta D., Christie G., Madrigal-Gonzalez B., Blyth J., Lowe C.R. Holographic sensors for the detection of bacterial spores. Biosensors and Bioelectronics, 2007;23(4):520–527.

21. Marshall A.J., Young D.S., Blyth J., Kabilan S., Lowe Ch.R. Metabolite-Sensitive Holographic Biosensors. Analytical Chemistry, 2004;76(5):1518–1523.

22. Lee M.C., Kabilan S., Hussain A., Yang X., Blyth J., Lowe Ch.R. Glucose-Sensitive Holographic Sensors for Monitoring Bacterial Growth. Analytical Chemistry, 2004;76(19)5748–5755.

23. Sartain F.K., Yang X., Lowe C.R. Holographic Lactate Sensor. Analytical Chemistry, 2006;78(16):5664–5670; DOI: 10.1021/ac060416g.

24. Martinez-Hurtado J.L., Davidson C.A., Blyth J., Lowe C.R. Holographic Detection of Hydrocarbon Gases and Other Volatile Organic Compounds. Langmuir, 2010;26:15694–15699; DOI: 10.1021/la102693m.

25. Naydenova I., Jallapuram R., Toal V., Martin S. A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer. Appl. Phys. Lett., 2008;92:031109; DOI:10.1063/1.2837454.

26. Maxwell Garnett J.C. Colours in metal glasses and in metallic films. Phil. Trans. A, 1904;203:385–420.

27. Maxwell Garnett J.C. Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II. Phil. Trans. A, 1906;205:237–288.

28. Postnikov V.A., Tikhonov V.E., Kraysky A.V., Shevchenko M.A., Sergienko V.I. Holographic sensors for determining glucose in model media and serum (Golograficheskie sensory dlya opredeleniya glyukozy v model'nykh sre-dakh i syvorotke krovi). Izvestiya vuzov. Fizika, 2015;58(11/3):58–60 (in Russ.).

29. Kraiskii A.V., Postnikov V.A. Holographic sensors for determining the components of aqueous solutions (Golograficheskie sensory dlya opredeleniya komponentov vodnykh rastvorov). Izvestiya vuzov. Fizika, 2015;58(11/3):40–42 (in Russ.).

30. Zaitseva G.V., Zaritsky A.R., Kirichenko M., Krasnov M.A., Krisky A.V., Postnikov V.A., Shevchenko M.A. Effects of decrease in glucose concentration in blood plasma after oxygen saturation of blood (Effekty umen’sheniya kontsentratsii glukozy v plazme krovi posle nasyshcheniya krovi kislorodom). Kratkie soobshcheniya po fizike FIAN, 2017;44(6):3 (in Russ.).

31. Kraiskii A.V., Mironova T.V., Sultanov T.T. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method (Izmenenie poverhnostnogo raspredeleniya dliny volny uzkopolostnogo izluchenia kolorimetricheskim metodom). Quantum Electronics, 2010;40(7):652–658 (in Russ.).

32. Kraiskii A.V., Mironova T.V., Sultanov T.T. Narrowband radiation wavelength measurement by processing digital photographs in RAW format (Izmenenie dliny volny uzkopolostnogo izluchenia pri obrabotke tsifrovyh fotografiy v RAW-formate). Quantum Electronics, 2012;42(12):1137–1139 (in Russ.).

33. Kraiskii A.V., Postnikov V.A., Sultanov T.T., Mironova T.V., Kraiskii A.A., Shevchenko M.A. Optical properties of holographic sensors and colorimetric method for determining the wavelength of narrow-band light radiation (Opticheskie svoistva golograficheskikh sensorov i kolorimetricheskii sposob opredeleniya dliny volny uzkopolosnogo svetovogo izlucheniya). Izvestiya vuzov. Fizika, 2015;58(11/3):47–50 (in Russ.).

34. Gallegos D., Long K.D., Yu H., Clark P.P., Lin Y., George Sh., Natha P., Cunningham B.T. Label-free biodetection using a smartphone. Lab. Chip., 2013;13:21–24; DOI: 10.1039/c3lc40991k.

35. Martinez-Hurtado J.L., Ali K. Yetisen, SeokHyun Yun Multiplex Smartphone Diagnostics. Paul C. Guest (ed.). – Multiplex Biomarker Techniques: Methods and Applications, Methods in Molecular Biology. – 2017, vol. 1546; DOI 10.1007/978-1-4939-6730-8_26,©Springer Science+Business Media LLC.

36. Khalili Moghaddam G., Lowe C.R. Smartphonebased quantitative measurements on holographic sensors. PLoS ONE, 2017;12(11):e0187467. Available on: https://doi.org/10.1371/journal.pone.0187467


Review

For citations:


Kraiski A.V., Postnikov V.A., Mironova Т.V., Kraiski A.A., Shevchenko М.A., Kazaryan M.A. HOLOGRAPHIC SENSORS FOR DIAGNOSTICS OF COMPONENTS IN AQUEOUS SOLUTIONS AND BIOLOGICAL FLUIDS. Alternative Energy and Ecology (ISJAEE). 2018;(10-12):105-124. (In Russ.) https://doi.org/10.15518/isjaee.2018.10-12.105-124

Views: 1070


ISSN 1608-8298 (Print)