NEW TYPE OF ECOLOGICALLY CLEAN SMALL-SCALE POWER PLANTS BASED ON FAST COMBUSTION OF WATER-ALUMINUM SUSPENSION AND BIOGAS COMBUSTION IN MATRIX BURNERS
https://doi.org/10.15518/isjaee.2015.01.004
Abstract
The paper describes the new type of highly effective ecologically clean small-scale power plants that use renewable energy resources of both organic and inorganic origin, notably biogas and aluminum. The oxidation of aluminum in water suspensions proceeds in combustion wave in high temperature reactor at pressures up to 100 atm and temperatures 2500-3000oC. The process let separate generation of hydrogen and high temperature steam. The first stage involves the combustion of water-aluminum suspension of stoichiometric composition with the production of hydrogen and rigid frame of very hot aluminum oxide. At the second stage after hydrogen removing the additional portion of water is introduced into reactor. At the interaction with hot aluminum oxide this water converts to high temperature steam. After aluminum oxide removing the process can be repeated. Such process enables us to escape the penetration of highly dispersed corundum particles in power plant. As a combustor for low calorific biogas a volumetric matrix burner is used. The possibility of stable combustion of low calorific biogas in such combine power plant is provided both by the peculiarities of matrix combustors and addition of hydrogen generated at the combustion of water-aluminum suspension. Thus, such combination enables us to use two different types of renewable energy sources in combined device. At that, aluminum oxidation produces hydrogen that provides sustained combustion of low calorific biogas in matrix burner for ecologically clean distributed power generation from renewable sources.
About the Authors
V. M. ShmelevRussian Federation
Dr. Sci. (in Physics), Professor, Head of Laboratory, Semenov Institute of Chemical Physics, RAS
V. S. Arutyunov
Russian Federation
Dr. Sci. (Chemistry), Professor, Head of Laboratory, Semenov Institute of Chemical Physics, RAS
A. A. Zakharov
Russian Federation
Scientific Researcher of Laboratory, Semenov Institute of Chemical Physics, RAS
References
1. Arutyunov V.S. Veduŝie tendencii ènergetiki načala veka: povyšenie èffektivnosti ispolʹzovaniâ resursov, ènergosbereženie i decentralizaciâ. Rossijskij himičeskij žurnal, 2008, vol. 52, no. 6, pp. 4–10 [in Russ.].
2. ExxonMobil: Energy demand to increase 50% by 2030. Oil & Gas J, Jan 9, 2006.
3. Favorskij O.N. Vestnik RAS, 2007, vol. 77, no. 2, pp. 121–132 [in Russ.].
4. Alʹmyasheva O.V., Korytkova E.N., Maslov A.V., Gusarov V.V. Neorganičeskie materialy, 2005, vol. 41, no. 5, p. 540 [in Russ.].
5. Bersh A.V., Klejmenov B.V., Mazalov Yu.A., Ni-zovcev V.E. Inform. Bûl. Radioèlektronika i telekommu-nikacii, 2005, no. 38, p. 62 [in Russ.].
6. Klejmenov B.V., Mazalov Yu.A., Bersh A.V., Ni-zovcev V.E. Inform. Bûl. Radioèlektronika i telekommu-nikacii. 2005, no. 39, p. 58 [in Russ.].
7. Digne M., Sautet P., Raybaud P., Toulhoat H., Artacho E. Structure and Stability of Aluminum Hydrox-ides: A Theoretical Study. J. Phys. Chem. B, 2002, vol. 106, pp. 5155–5162.
8. Deng Z-Y, Ferreira J.M.F., Tanaka Y., and Ye J. Physicochemical Mechanism for the Continuous Reac-tion of γ-Al2O3-Modified Aluminum Powder with Water. J. Am. Ceram. Soc, 2007, vol. 90, pp. 1521–1526.
9. McCafferty E. Sequence of steps in the pitting of aluminum by chloride ions. Corrosion Science, 2003, vol. 45, pp. 1421–1438.
10. Shmelev V.M., Finyakov S.V. Osobennosti goreniâ smesej alûminiâ s vodoj. Him. Fiz., 2013, vol. 32, no. 7, pp. 1–11 [in Russ.].
11. Kuehl, D. K. Ignition and combustion of aluminum and beryllium. AIAA J, 1965, vol. 3, p. 12.
12. Belyaev A.F., Frolov Yu.V., Korotkov A.I. O gorenii i vosplamenenii častic melkodispersnogo alûminiâ. FGV, 1968, vol. 4, pp. 323–329 [in Russ.].
13. Belyaev A.F., Ermolaev B.S., Korotkov A.I., Frolov Yu.B. Osobennosti goreniâ poroškoobraznogo alûminiâ. FGV, 1969, vol. 5, pp. 207–217 [in Russ.].
14. Franzoni F., Milani M., Montorsi L., Golovitchev V. Combined hydrogen production and power generation from aluminum combustion with water: Analysis of the concept. Int. J. Hydrogen En, 2010, vol. 35. pp. 1548-1559.
15. Bruno C., Ingenito A. and Cuoco F. Using pow-dered aluminum for space propulsion. University of Rome “La Sapienza”, Report, Via Eudossiana 18, 00185. Roma, Italy.
16. Shmelev V.M., Finyakov S.V. Osobennosti goreniâ smesej alûminiâ s vodoj. Collection of works «Gorenie i vzryv», Moscow: Torus press, 2013, issue. 6, pp. 169–173 [in Russ.].
17. Ermolaev B.S., Hrapovskij V.E., Shmelev V.M. O konvektivnom gorenii smesi alûminiâ s vodoj. Himičeskaâ fizika, 2014, vol. 33, no. 9, pp. 44–51 [in Russ.].
18. Shmelev V.M., Nikolaev V.M., Arutyunov V.S. Èffektivnye ènergosberegaûŝie goreločnye ustrojstva na osnove obʺemnyh matric. Gazohimiâ, 2009, no. 4(8), pp. 28–34 [in Russ.].
19. Arutyunov V.S., Shmelev V.M., Lobanov I.N., Politenkova G.G. Generator sintez-gaza i vodoroda na osnove radiacionnoj gorelki. TOHT, 2010, vol. 44, no. 1, pp. 21–30.
20. Shapovalova O.V., Young Nam Chun, Arutyunov V.S., Shmelev V.M. Syngas and hydrogen production from biogas in 3D matrix reformers. Int. J. Hydr. Energy, 2012, vol. 37, no. 19, pp. 14040–14046.
21. Arutyunov V.S., Shmelev V.M., Sinev M.Yu., Shapovalova O.V. Syngas and hydrogen production in a volumetric radiation burners. Chem. Eng. J, 2011, vol. 176–177, pp. 291–294.
22. Arutyunov V.S., Shmelev V.M., Rahmetov A.N., Shapovalova O.V., Zaharov A.A., Roschin A.V. Novye podhody k sozdaniû nizkoèmissionnyh kamer sgoraniâ GTU. International Scientific Journal “Alʹternativnaâ ènergetika i èkologiâ” (ISJAEE), 2013, no. 06 (128), pp. 105–120 [in Russ.].
23. Rahmetov A.N., Shmelev V.M., Arutyunov V.S. Nizkoèmissionnye kamery sgoraniâ GTU na osnove pronicaemyh obʺemnyh matric. Gorenie i plazmohimiâ, 2013, vol. 11, no. 2, pp. 83–91 [in Russ.].
24. Shmelev V. M. Gorenie prirodnogo gaza na pover-hnosti iz vysokoporistoj metalličeskoj peny. Himičeskaâ fizika, 2010, vol. 29, no. 7, pp. 1–10 [in Russ.].
25. Troshin K.Ya., Borisov A.A., Rahmetov A.N., Arutyunov V.S., Politenkova G.G. Skorostʹ goreniâ metan-vodorodnyh smesej pri povyšennyh davleniâh i temperaturah. Himičeskaâ fizika, 2013, vol. 32, no. 5, pp. 76–87 [in Russ.].
Review
For citations:
Shmelev V.M., Arutyunov V.S., Zakharov A.A. NEW TYPE OF ECOLOGICALLY CLEAN SMALL-SCALE POWER PLANTS BASED ON FAST COMBUSTION OF WATER-ALUMINUM SUSPENSION AND BIOGAS COMBUSTION IN MATRIX BURNERS. Alternative Energy and Ecology (ISJAEE). 2015;(1):45-61. (In Russ.) https://doi.org/10.15518/isjaee.2015.01.004