Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

HYDROGEN-OXYGEN STEAM GENERATOR FOR A CLOSED HYDROGEN COMBUSTION CYCLE

https://doi.org/10.15518/isjaee.2018.13-15.068-079

Abstract

The paper analyzes the problems of combustion hydrogen in an oxygen medium for produce high-temperature steam that can be used to produce electricity at various power plants. For example, at the nuclear power plants, the use of a H2-O2 steam generator as part of a hydrogen energy complex makes it possible to increase its power and efficiency in the operational mode due to steam-hydrogen overheating of the main working fluid of a steam-turbine plant. In addition, the use of the hydrogen energy complex makes it possible to adapt the nuclear power plants to variable electric load schedules in conditions of increasing the share of nuclear power plants and to develop environmentally friendly technologies for the production of electricity. The paper considers a new solution of the problem of effective and safe use of hydrogen energy at NPPs with a hydrogen energy complex.

Technical solutions for the combustion of hydrogen in the oxygen medium using direct injection of cooling water or steam in the combustion products have a significant drawback – the effect of “quenching” when injecting water or water vapor which leads to a decrease in the efficiency of recombination during cooling of combustion products that is expressed in an increase fraction of non-condensable gases. In this case, the supply of such a mixture to the steam cycle is unsafe, because this can lead to a dangerous increase in the concentration of unburned hydrogen in the flowing part of the steam turbine plant. In order to solve this problem, the authors have proposed a closed hydrogen cycle and a hydrogen vapor overheating system based on it, and carried out a study of a closed hydrogen combustion system which completely eliminates hydrogen from entering the working fluid of the steam cycle and ensures its complete oxidation due to some excess of circulating oxygen.

The paper considers two types of hydrogen-oxygen combustion chambers for the system of safe generating of superheated steam using hydrogen in nuclear power plant cycle by using a closed system for burning hydrogen in an oxygen medium. As a result of mathematical modeling of combustion processes and heat and mass transfer, we have determined the required parameters of a hydrogen-oxygen steam generator taking into account the temperature regime of its operation, and a power range of hydrogen-oxygen steam generators with the proposed combustion chamber design.

About the Authors

R. Z. Aminov
Saratov Scientific Center of Russian Academy of Sciences
Russian Federation

Rashid Aminov - D.Sc. in Engineering, Professor, Chief Researcher at Saratov Scientific Center of RAS, Yuri Gagarin State Technical University of Saratov.

24 Rabochaya St., Saratov, 410028

Tel.: +7(8452)27 14 36; fax: (8452)27 14 36



A. N. Egorov
Saratov Scientific Center of Russian Academy of Sciences
Russian Federation

Aleksandr Egorov - Ph.D.  in  Engineering,  Researcher  at Saratov Scientific Center of RAS, Yuri Gagarin State Technical University of Saratov.

24 Rabochaya St., Saratov, 410028

Tel.: +7(8452)27 14 36; fax: (8452)27 14 36



References

1. Aminov R.Z., Bairamov A.N. Combination of hydrogen energy cycles with nuclear power plants (Kombinirovanie vodorodnykh energeticheskikh tsiklov s atomnymi elektrostantsiyami). Moscow: Nauka Publ., 2016, 254 p. (in Russ.)

2. Aminov R.Z., Bairamov A.N. Performance evaluation of hydrogen production based on off-peak electric energy of the nuclear power plant. International journal of hydrogen energy, 2017;42:21617–21625.

3. Aminov R.Z., Schastlivtsev A.I., Bairamov A.N. On the issue of investigating the kinetics of processes in dissociated water steam. International journal of hydrogen energy, 2017;42:20843–20848.

4. Aminov R., Egorov A., Yurin V. Emergency cooling system for water-cooled reactors. Conf. Proc. 17 International Multidisciplinary Scientific GeoConference “Energy and Clean Technology”, Albena, 2017, pp. 3–10.

5. Aminov R.Z., Egorov A.N., Yurin V.E. Hydrogen cycle based backup for NPP internal needs during a blackout. Atomic Energy, 2013;114(4):289–292.

6. Aminov R.Z., Egorov A.N., Yurin V.E., V.N. Bessonov Multifunctional Backup for NPP Internal Needs. Atomic Energy, 2017;121(5):327–333.

7. Shpilrain E.E., Sarumov Yu.A., Popel O.S. Application of hydrogen in power engineering and in energy technology complexes (Primenenie vodoroda v energetike i v energotekhnologicheskikh kompleksakh). Atomic-hydrogen power engineering and technology, 1982;4:5–22 (in Russ.).

8. Malyshenko S.P., Nazarova O.V., Sarumov Yu.A. Some thermodynamic, technical and economic aspects of the use of hydrogen as an energy carrier in the energy sector (Nekotorye termodinamicheskie i tekhniko-ekonomicheskie aspekty primeneniya vodoroda kak energonositelya v energetike). Atomic-hydrogen power engineering and technology, 1986;7:105–126 (in Russ.).

9. Forsberg C.W., Haratyk G. Nuclear Wind hydrogen systems for variable electricity and hydrogen production, International Congress on Energy, 2011, New York. Available on: https://www.aiche.org/academy/videos/conference-presentations/nuclear-wind-hydrogen-systems-variable-electricity-and-hydrogen-production (04.18.2018).

10. Forsberg C.W. Is hydrogen the future of nuclear energy, International topical meeting on the safety and technology of nuclear hydrogen production, control and management, 2007, Boston. Available on: http://www.350.me.uk/TR/Hansen/Forsberg01.pdf (04.18.2018).

11. Forsberg C.W. Hydrogen futures and technologies, Rohsenow Symposium on Future Trends in Heat Transfer, 2003, Massachusetts. Available on: https://dspace.mit.edu/bitstream/handle/1721.1/7303/FORSBERG.pdf?sequence=1 (04.18.2018).

12. Vargaftik N.B. Handbook of thermophysical properties of gases and liquids (Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei). Moscow, 1972 (in Russ.).

13. Schastlivtsev A.I., Borzenko V.I. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production. Journal of Physics: Conference Series, 2017;891:012213.

14. Malyshenko S.P., Gryaznov A.N., Filatov N.I. High-pressure H2/O2 – steam generators and they possible applications. International Journal of Hydrogen Energy, 2004;29:589–596.

15. Malyshenko S.P., Prigozhin V.I., Savich A.R., Schastlivtsev A.I., Il’ichev V.A., Nazarova O.V. Effectiveness of steam generation in oxyhydrogen steam generators of the megawatt power class. High Temperature, 2012;50(6):765–773.

16. Pribaturin N.A., Alekseev M.V., Bogomolov A.R., Sorokin A.L., Fedorov V.A., Azikhanov S.S., Shevyrev S.A. Experimental investigation on combustion of hydrogen-oxygen and methane–oxygen mixtures in the medium of low-superheated steam. Thermal Engineering, 2016;63(5):336–341.

17. Temam R. The Navier-Stokes equations. Theory and numerical analysis (Uravneniya Nav'e-Stoksa. Teoriya i chislennyi analiz). Moscow: Mir Publ., 1981 (in Russ.).

18. Landau L.D., Lifshitz E.M. Hydrodynamics (Gidrodinamika). Moscow: Nauka Publ., 1988 (in Russ.).

19. Dul'nev. G.N. Parfenov V.G., Sigalov A.V. Application of a computer for solving heat exchange problems (Primenenie EVM dlya resheniya zadach teploobmena). Moscow: Vysshaya Shkola Publ., 1990 (in Russ.).

20. Soloveichik Yu.G., Royak M.E., Persova M.G. Finite Element Method for Scalar and Vector Problems (Metod konechnykh elementov dlya skalyarnykh i vektornykh zadach). Novosibirsk: NGTU, 2007 (in Russ.).

21. Patankar S.V. Numerical solution of the problems of heat conduction and convective heat transfer during flow in canals (Chislennoe reshenie zadach teploprovodnosti i konvektivnogo teploobmena pri techenii v kanalakh). Moscow: Publishing house MPEI, 2003 (in Russ.).

22. Anderson D. Jr. Computational Fluid Dynamics. The basics with applications, McGraw-Hill Inc, 1995, 383 p.

23. Romanova E.V., Koliukh A.N., Lebedev E.A. Application of the ANSYS package in the investigation of the hydraulic resistance of the finned recuperator (Primenenie paketa ANSYS pri issledovanii gidravlicheskogo soprotivleniya orebrenogo rekuperatora). Vestnik TGTU, 2017;3:420–427 (in Russ.).

24. Fedorova N.N., Val'ger S.A., Danilov M.N., Zakharova Yu.V. Fundamentals of work in ANSYS 17 (Osnovy raboty v ANSYS 17). Moscow: DMK Press Publ., 2017 (in Russ.).

25. Frank-Kamenetskii D.A. Diffusion and heat transfer in chemical kinetics (Diffuziya i teploperedacha v khimicheskoi kinetike). M.: Nauka Publ., 1987 (in Russ.).

26. Poinsot T. Theoretical and Numerical Combustion, R.T. Edwards Inc., 2012:588.

27. Korkodinov Ya.A. An overview of the k-ε turbulence models for simulation (Obzor semeistva k–ε modelei dlya modelirovaniya turbulentnosti). M.: Mashinostroenie, materialovedenie Publ., 2013;15(2):5– 16 (in Russ.).

28. Solntseva, E.D. Computer simulation of the combustion process of gaseous fuel in the GRS-150 burner (Komp'yuternoe modelirovanie protsessa goreniya gazoobraznogo topliva v gorelke GRS-150), Teplotekhnika i informatika v obrazovanii, nauke i proizvodstve: sbornik dokladov VI Vserossiiskoi nauchno prakticheskoi konferentsii studentov, aspirantov i molodykh uchenykh (TIM’2017) s mezhdunarodnym uchastiem. Ekaterinburg, 11–12 May, 2017), 2017:124– 128 (in Russ.).

29. Maslennikov S.B. Heat-resistant steels and alloys: Reference book (Zharoprochnye stali i splavy: Spravochnik). M.: Metallurgiya Publ., 1983 (in Russ.).

30. Aleksandrenkov V.P. Calculation of the external flow-through cooling of the liquid rocket engine. Electronic educational edition (Raschet naruzhnogo protochnogo okhlazhdeniya kamery ZhRD. Elektronnoe uchebnoe izdanie), Moscow: MGTU im. N. E. Baumana, 2012 (in Russ.).


Review

For citations:


Aminov R.Z., Egorov A.N. HYDROGEN-OXYGEN STEAM GENERATOR FOR A CLOSED HYDROGEN COMBUSTION CYCLE. Alternative Energy and Ecology (ISJAEE). 2018;(13-15):68-79. (In Russ.) https://doi.org/10.15518/isjaee.2018.13-15.068-079

Views: 1871


ISSN 1608-8298 (Print)