Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

NON-EQUILIBRIUM POROELECTROELASTIC THEORY OF POLYMER ELECTROLYTE WITHIN THE CONDITIONS OF WATER ELECTROLYSIS

https://doi.org/10.15518/isjaee.2018.13-15.087-112

Abstract

The paper considers a non-equilibrium poroelectroelastic theory of a polymer electrolyte under the conditions of water electrolysis with the purpose of further use for a theoretical description of mass transfer processes in l ayers of a membrane-electrode assembly. Moreover, this paper carries out the review and analysis of the models of electro- chemical and mass-exchange processes in the electrolyzers, and analyzes the problems of their physicochemical description. We make a conclusion about the need to use models of water sorption and scaling of polymer electrolyte and analyze the models of water sorption and swelling of the polymer electrolyte. It is concluded that the existing poroelectroelastic theory is the most suitable for its modification for use in non-equilibrium conditions during elec- trolysis. The basic equation of the balance of pressures of the classical equilibrium poroelectroelastic theory for polymer electrolyte is considered. A modification of the poroelectroelastic theory has been carried out in order to its use in non-equilibrium conditions of water electrolysis for the purpose of further modeling of mass transfer processes. Based on experimental data available in open sources, the paper makes an analysis of the properties and features of elastic forces in the polymer electrolyte, and then refines the dependencies of the elastic forces in the polymer electro- lyte from the swelling and temperature. Taking into account the existing experimental data on the permeability of gases in a polymer electrolyte and the feature of swelling of the polymer electrolyte in a contact with liquid water, parameters of the non-equilibrium poroelectroelastic theory have been obtained for the water electrolysis conditions.

About the Authors

A. A. Kalinnikov
National Research Centre “Kurchatov Institute”
Russian Federation

Alexander Kalinnikov - Head of Laboratory.

1 Kurchatov Sq., Moscow, 123182

Tel.: +7 499 196 73 22



S. A. Grigoriev
National Research University “Moscow Power Engineering Institute”
Russian Federation

Sergey Grigoriev - D.Sc. in Engineering, Professor.

14 Krasnokazarmennaya St., Moscow, 111250

Тel.: +7 495 362 72 06



D. G. Bessarabov
HySA Infrastructure Center of Competence, North-West University
South Africa

Dmitri Bessarabov - Ph.D. in Chemistry, DST National Center: HySA Infrastructure: Director.

Potchefstroom, 2520



References

1. Dincer I., Acar C. Smart energy solutions with hydrogen options. International Journal of Hydrogen Energy, 2018;43(18):8579–8599.

2. Bessarabov D., Wang H., Li H., Zhao N. (Eds) PEM Electrolysis for Hydrogen Production: Principles and Applications. CRC Press, 2015, 389 pages, ISBN: 978-1-4822-5229-3.

3. Doucet G., Etiévant C., Puyenchet C., Grigoriev S., Millet P. Hydrogen-based PEM auxiliary power unit. International Journal of Hydrogen Energy, 2009;34(11):4983–4989.

4. Grigor’ev S.A., Khaliullin M.M., Kuleshov N.V., Fateev V.N. Electrolysis of Water in a System with a Solid Polymer Electrolyte at Elevated Pressure. Russian Journal of Electrochemistry, 2001;37(8):819–822.

5. Grigoriev S.A., Dzhus K.A., Bessarabov D.G., Millet P. Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning. International Journal of Hydrogen Energy, 2014;39(35):20440–20446.

6. Eikerling M.H., Berg P. Poroelectroelastic theory of water sorption and swelling in polymer electrolyte membranes. Soft Matter, 2011;7:5976–5990.

7. Olivier P., Bourasseau C., Bouamama Pr.B. Low-temperature electrolysis system modelling: A review. Renewable and Sustainable Energy Reviews, 2017;78:280–300.

8. Lafmejani S.S., Olesen A.C., Kær S.K. VOF modelling of gas-liquid flow in PEM water electrolysis cell micro-channels. International journal of hydrogen energy, 2017;42:16333–16344.

9. Ojong E.T., Tai Hong Kwan J., Nouri-Khorasani A., Bonakdarpour A., Wilkinson D.P., Smolinka T. Development of an experimentally validated semi-empirical fully-coupled performance model of a PEM electrolysis cell with a 3-D structured porous transport layer. International journal of hydrogen energy, 2017;42:25831– 25847.

10. Aubras F., Deseure J., Kadjo J.-J.A., Dedigama I., Majasan J., Grondin-Perez B., Chabriat J.-P., Brett D.J.L. Two-dimensional model of low-pressure PEM electrolyser: Two-phase flow regime, electrochemical modelling and experimental validation. International journal of hydrogen energy, 2017;42:26203–26216.

11. Nouri-Khorasani A., Ojong E.O., Smolinka T., Wilkinson D.P. Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells, International journal of hydrogen energy, 2017;42:28665–28680.

12. Grigoriev S.A., Kalinnikov A.A., Millet P., Porembsky V.I., Fateev V.N. Mathematical modeling of high-pressure PEM water electrolysis, Journal of Applied Electrochemistry, 2010;40(5):921–932.

13. Tijani A.S., Haiyoon M.A. Simulation Analysis of the Effect of Temperature and Exchange Current Density on Power and Hydrogen Production of (PEM) Electrolyzer. Applied Mechanics and Materials, 2014;660:411–415.

14. Yitung N., Chen J., Boehm R.F., Katukota S. A Photoelectrochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production. Journal of Heat Transfer, 2008;130:042409–1.

15. Laoun B., Belhamel M., Naceur W., Serir L. Electrochemical Aided Model to Study Solid Polymer Electrolyte Water Electrolysis. Revue des Energies Renouvelables, 2008;11(2):267–276.

16. Choia P., Bessarabov D.G., Datta R. A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ionics, 2004;175:535–539.

17. Marangio F., Santarelli M., Cali M. Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International journal of hydrogen energy, 2009;3(4):1143–1158.

18. Ni M., Leung M.K.H., Leung D.Y.C. Electrochemistry Modeling of Proton Exchange Membrane (PEM) Water Electrolysis for Hydrogen Production, WHEC 16 / 13–16 June 2006 – Lyon France.

19. Tijani A.S., Haiyoon M.A. Simulation Analysis of the Effect of Temperature and Exchange Current Density on Power and Hydrogen Production of (PEM) Electrolyzer. Applied Mechanics and Materials, 2014;660:411–415.

20. Laoun B., Mahmah B., Serir L. Theoretical Investigation on Solid Polymer Electrolyte Water Electrolysis. WIH2 2007, 19–21 March 2007 – Ghardaïa, Algérie.

21. Zhang H., Su S., Lin G., Chen J. Efficiency Calculation and Configuration Design of a PEM Electrolyzer System for Hydrogen Production, Int. J. Electrochem. Sci., 2012;7:4143–4157.

22. Tijani A.S., Abdol Rahim A.H. Numerical Modeling the Effect of Operating Variables on Faraday Efficiency in PEM Electrolyzer. 3rd International Conference on System-integrated Intelligence: New Challenges for Product and Production Engineering, SysInt 2016 Procedia Technology, 2016;26:419–427.

23. Nieminen J., Dincer I., Naterer G. Comparative performance analysis of PEM and solid oxide steam electrolysers. Int. J. Hydrogen Energy, 2010;35:10842.

24. Ay M., Midilli A., Dincer I. Exergetic performance analysis of PEM fuel cell. Int. J. Energy Res., 2006;30(5):307–321.

25. Lewinski K.A., Vliet D., Luopa M. NSTF Advances for PEM Electrolysis the Effect of Alloying on Activity of NSTF Electrolyzer Catalysts and Performance of NSTF Based PEM Electrolyzers. ECS Trans., 2015;69(17):893–917.

26. Millet P., Ranjbari A., de Guglielmo F., Grigoriev S.A., Auprêtre F. Cell failure mechanisms in PEM water electrolyzers. International Journal of Hydrogen Energy, 2012;37(22)17478–17487.

27. Bessarabov D. (Invited) Membranes with Recombination Catalyst for Hydrogen Crossover Reduction: Water Electrolysis. ECS Trans., 2018;85(11)17–25.

28. Bessarabov D., Kruger A., Luopa S.M., Park J., Molnar A.A., Lewinski K.A. Gas Crossover Mitigation in PEM Water Electrolysis: Hydrogen Cross-over Benchmark Study of 3M's Ir-NSTF Based Electrolysis Catalyst-Coated Membranes. ECS Trans., 2016;75(14)1165–1173.

29. Bessarabov D. Gas Permeability of Proton Exchange Membranes, Chapter 21, in: PEM Fuel Cell Diagnostic Tools, Editor(s): Wang H., National Research Council Canada, Vancouver, Canada; Yuan X.-Z., National Research Council Canada, Vancouver, Canada; Li H., National Research Council Canada, Vancouver, Canada, CRC Press, 2011, 443–473, ISBN: 9781439839195, Pages: 443–473.

30. Kundu S., Cimenti M., Lee S., Bessarabov, D. Fingerprint of automotive fuel cell cathode catalyst degradation: Pt band in PEMs. Membrane Technology, 2009(10):7–10.

31. R. Oberlin, S. Stucki and H. J. Christen, Gas permeation through an SPE membrane during electrolysis. 33rd ISE-Meeting, Lyon, France; p. 434–436.

32. Schalenbach M., Carmo M., Fritz D.L., Mergel J., Stolten D. Pressurized PEM water electrolysis: Efficiency and gas crossover. International Journal of Hydrogen Energy, 2013;38:14921–14933.

33. Ito H., Maeda T., Nakano A., Takenaka H. Properties of Nafion® membranes under PEM water electrolysis conditions. International journal of hydrogen energy, 2011;36:10527–10540.

34. Grigoriev S.A., Porembskiy V.I., Korobtsev S.V., Fateev V.N., Aupretre F., Millet P. High-pressure PEM water electrolysis and corresponding safety issues. International Journal of Hydrogen Energy, 2011;36(3)2721–2728.

35. Ito H., Miyazaki N., Ishida M., Nakano A. Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis. International Journal of Hydrogen Energy, 2016;41:20439–20446.

36. Durst J., Simon C., Hasche F., Gasteiger H.A. Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. Journal of the Electrochemical Society, 2015;162(1):F190–F203.

37. Schalenbach M., Hoefner T., Paciok P., Carmo M., Lueke W., Stolten D. Gas Permeation through Nafion®. Part 1: Measurements. J. Phys. Chem. C, 2015;119:25145−25155.

38. Choi P., Datta R. Sorption in Proton-Exchange Membranes. An Explanation of Schroeder’s Paradox, Journal of the Electrochemical Society, 2003;150(12):E601–E607.

39. Choi P., Jalani N.H, Thampan T., Datta R. Consideration of Thermodynamic, Transport, and Mechanical Properties in the Design of Polymer Electrolyte Membranes for Higher Temperature Fuel Cell Operation. Journal of Polymer Science: Part B: Polymer Physics, 2006;44(16):2183–2200.

40. Futerko P., Hsing I-M. Thermodynamics of Water Vapor Uptake in Perfluorosulfonic Acid Membranes. Journal of the Electrochemical Society, 1999;146(6):2049–2053.

41. Choi P., Jalani N.H., Datta R. Thermodynamics and Proton Transport in Nafion®. I. Membrane Swelling, Sorption, and Ion-Exchange Equilibrium. Journal of the Electrochemical Society, 2005;152(3):E84–E89.

42. Onishi L.M., Prausnitz J.M., Newman J. Water-Nafion® Equilibria. Absence of Schroeder’s Paradox. J. Phys. Chem. B, 2007;111:10166–10173.

43. Freger V. Hydration of Ionomers and Schroeder’s Paradox in Nafion®. J. Phys. Chem. B, 2009;113:24–36.

44. Hinatsu J.T., Mizuhata M., Takenaka H. Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor. J. Electrochem. Soc., 1994;141(6):1493–1498.

45. Flory. P.J. Principles of Polymer Chemistry. Cornell University Press, Ithaca, 1953.

46. Jalani N.H., Choi P., Datta R. TEOM: A novel technique for investigating sorption in proton-exchange membranes. Journal of Membrane Science, 2005;254:31–38.

47. Divisek J., Eikerling M., Mazin V., Schmitz H., Stimming U., Volfkovich Yu. M. Study of Capillary Porous Structure and Sorption Properties of Nafion® Proton Exchange Membranes Swollen in Water. J. Electrochem. Soc., 1998;145(8):2677–2683.

48. Tang Y., Karlsson A.M., Santare M.H., Gilbert M., Cleghorn S., Johnson W.B. An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Materials Science and Engineering A, 2006;425:297–304.

49. Weber A.Z., Newman J. A Theoretical Study of Membrane Constraint in Polymer-Electrolyte Fuel Cells. American Institute of Chemical Engineers AIChE Journal, 2004;50(12):3215–3226.

50. Schroeder P.V. Über Erstarrungsund Quellungserscheinungen von Gelatine. Z. Phys. Chem., 1903;45:75 117.

51. Freger V. Elastic energy in microscopically phase-separated swollen polymer networks. Polymer, 2002;43(1):71–76.

52. Elfring G.J., Struchtrup H. Thermodynamics of pore wetting and swelling in Nafion®. J. Membr. Sci., 2008;315(1–2):125 132.

53. Jalani N.H., Mizar S.P., Choi P., Furlong C., Datta R. Optomechanical characterization of proton-exchange membrane fuel cells. Proc. SPIE, 2004; 5532:316–325.

54. Satterfield M.B., Benziger, J.B. Viscoelastic properties of Nafion® at elevated temperature and humidity. Journal of Polymer Science: Part B: Polymer Physics, 2008;47:11–24.

55. Paddison S., Reagor D.W., Zawodzinski T.A. High-frequency dielectric studies of hydrated Nafion®. J. Electroanal. Chem., 1998;459:91–97.

56. Roldughina V.I., Karpenko-Jereb L.V. On the Schroeder Paradox for Ion-Exchange Polymers. Colloid Journal, 2016;78(6):795–799.

57. Berg P., Kehinde Ladipo Exact solution of an electro-osmotic flow problem in a cylindrical channel of polymer electrolyte membranes. Proc. R. Soc. A, 2009;465:2663–2679.

58. Zawodzinski T.A., Gottesfeld S., Shoichet S., McCarthy T.J. The contact angle between water and the surface of perfluorosulphonic acid membranes. J. Appl. Electrochem., 1993;23:86 88.

59. Gibbs J.W. On the Equilibrium of Heterogeneous Substances, in Bumstead, H.A.; Van Nameeds, R.G.,The Scientific Papers of J. Willard Gibbs, 1, Woodbridge, CT: Ox Bow Press, 2002; p. 55–354.

60. Nazarov I., Promislow K. The Impact of Membrane Constraint on PEM Fuel Cell Water Management. Journal of the Electrochemical Society, 2007;154(7):B623–B630.

61. Baranov I.E., Grigoriev S.A., Ylitalo D., Fateev V.N., Nikolaev I.I. Transfer processes in PEM fuel cell: Influence of electrode structure. International Journal of Hydrogen Energy, 2006;31(2):203–210.

62. Frensch S.H., Olesen A.C., Araya S.S., Kær S.K. Model-supported characterization of a PEM water electrolysis cell for the effect of compression. ElectrochimicaActa, 2018;263:228–236.

63. Kalinnikov A.A., Grigoriev S.A., Bessarabov D.G. Model of transport in a polymer electrolyte on the basis of a nonequilibrium poroelectroelastic theory (Model transporta v polimernom elektrolite na osnove neravnovesnoi poroelektroelastichnoi teorii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2018, in print (in Russ.).


Review

For citations:


Kalinnikov A.A., Grigoriev S.A., Bessarabov D.G. NON-EQUILIBRIUM POROELECTROELASTIC THEORY OF POLYMER ELECTROLYTE WITHIN THE CONDITIONS OF WATER ELECTROLYSIS. Alternative Energy and Ecology (ISJAEE). 2018;(13-15):87-112. (In Russ.) https://doi.org/10.15518/isjaee.2018.13-15.087-112

Views: 710


ISSN 1608-8298 (Print)