

PHYSICAL AND CHEMICAL PECULIARITIES OF FORMATION OF ALUMINIDES OF IV–V GROUPS METALS IN HYDRIDE CYCLE
https://doi.org/10.15518/isjaee.2018.13-15.122-140
Abstract
The traditional methods for production of МеIV-V aluminides are laborious, long-lasting and multi-stage. The Laboratory of High-Temperature Synthesis and Technology of Inorganic Compounds has developed a new highly efficient method for obtaining alloys and intermetallides of refractory metals, the “hydride cycle” (HC) method. This review presents the results of systematic studies of HC-formation of aluminides in the systems TiH2–Al, ZrH2–Al, NbH1,23–Al, TiH2–Al–ZrH2, TiH2-Al-NbH1,23. The review describes the influences on this process of such parameters, as chemical characteristics of hydrides, the ratios of the initial components, phase transformations, etc., and proposes a mechanism for the HC-formation of aluminides of IV-V groups metals: upon heating of compacted хМеH2+(1-х)Al→МехAl1-х+Н2↑, the hydrogen dissociates from the hydride; in the environment of the liberated hydrogen, the oxide film is removed; a very active metals are formed, which instantly interact with aluminum exothermically by a solid-phase mechanism without aluminum melting. We have synthesized in HC more than 30 aluminides: single-phase α2-Ti3Al, γ-TiAl и TiAl3; solid solutions of Al in Zr: Zr3Al, single-phase ZrAl2, ZrAl3 and Zr3AlH4.49 hydride; single-phase NbAl3 , Nb2Al and Nb3Al, containing about 10% Nb2Al; Ti0,35 Zr0,4Al0,25; Ti0,55Zr0,2Al0,25; Ti0,25Al0,5Nb0,25; Ti0,45Al0,28Nb0,27, Ti0,2Zr0,05Al0,75; Ti0,2Zr0,05Al0,75, etc. Without preliminary crushing, some aluminides interact with hydrogen in the SHS mode forming reversible hydrides. Based on the obtained results, two concentration triangles for Ti-Al-Zr and Ti-Al-Nb systems were constructed. Compared with existing methods, the synthesis in HC of aluminides of IV and V group metals has significant advantages: relatively low temperatures (~ 1000°C) and short duration (30-60 min) of process; formation in one technological stage, without melting of the original components; environmentally friendly and energy-saving, economically viable, etc. Synthesis of trialuminides occurs at temperatures of 650-670ºC. Aluminides based on MeIV-V groups are very promising construction materials, they are used in aerospace and ground machine-building, defense industry, chemical and food industry, electronics, as biocompatible materials in medicine, etc.
About the Authors
S. K. DolukhanyanArmenia
Seda Dolukhanyan - D.Sc. in Engineering, Professor, Head of the Laboratory.
5/2 P. Sevak St., Yerevan, 375044
Tel.: +7 (060) 62 35 90
G. N. Muradyan
Armenia
Garnik Muradyan - Junior Researcher.
5/2 P. Sevak St., Yerevan, 375044
Tel.: +7 (060) 62 35 90
A. G. Aleksanyan
Armenia
Anahit Aleksanyan - Researcher.
5/2 P. Sevak St., Yerevan, 375044
Tel.: +7 (060) 62 35 90
O. P. Ter-Galstyan
Armenia
Ofelya Ter-Galstyan - Researcher.
5/2 P. Sevak St., Yerevan, 375044
Tel.: +7 (060) 62 35 90
N. L. Mnatsakanyan
Armenia
Nune Mnatsakanyan - Researcher.
5/2 P. Sevak St., Yerevan, 375044
Tel.: +7 (060) 62 35 90
References
1. Kazantseva N.V., Mushnikov N.V, Popov A.G., Terent’ev P.B., Pilyugin V.P. Severe plastic deformation and hydrogenation of titanium aluminides. Journal of Alloys and Compounds, 2011;509(38):9307–9311.
2. Rodríguez C., Belzunce F.J., Betegon C. Nanostructured Al–ZrAl3 materials consolidated via spark plasma sintering: Evaluation of their mechanical properties. Journal of Alloys and Compounds, 2013;550:402–407.
3. Zhao Liu, Yongliang Chen, Lupeng Du. Preparation of Nb3Al superconductor by powder metallurgy. J. Mod. Transport, 2014;22(1):55–60.
4. Azevedo G., Santos D.B. Synthesis and Characterization of Aluminum–Zirconium Intermetallic Composites. Journal of Materials Synthesis and Processing, 2000;8(5):101–107.
5. Milanese C., Maglia F., Tacca A. Ignition and reaction mechanism of Co–Al and Nb–Al intermetallic compounds prepared by combustion synthesis. Journalof Alloys and Compounds, 2006;421:156–161.
6. Dolukhanyan S.K., Aleksanyan A.G., TerGalstyan O.P., Shekhtman V.Sh, Sakharov M.K., Abrosimova G.E. Specifics of the formation of alloys and their hydrides in the Ti–Zr–H system. Russian Journal of Physical Chemistry B, 2007;2(6):563–569.
7. Method for the preparation of compact hydrides of transition metals (Sposob polucheniya compactnykh gidridov perekhodnykh metallowmetallow). Patent RA, No. 2299A. C01B 6/00 / Dolukhanyan S.K., Aleksanyan A.G. – 2009 (in Russ.).
8. Method for obtaining alloys of transition metals (Sposob polucheniya splavov perekhodnykh metallov). PA Patent No. 2308A. C22C 1/04 / S.K. Dolukhanyan, A.G. Aleksanyan. – 2009 (in Russ.).
9. Dolukhanyan S.K., Aleksanyan A.G., Shekhtman V.Sh., Hakobyan H.G., Mayilyan D.G., Aghadjanyan N.N., Abrahamyan K.A., Mnatsakanyan N.L., TerGalstyan O.P. Synthesis of Transition Metal Hydrides and a New Process for Production of Refractory Metal Alloys: An Autoreview. International Journal of SelfPropagating High-Temperature Synthesis, 2010;19(2):85–93.
10. Aleksanyan A.G Dolukhanyan S.K., Shekhtman V.Sh., Huot J., Ter-Galstyan O.P., Mnatsakanyan N.L. Formation of alloys in Ti–V system in hydride cycle and synthesis of their hydrides in self-propagating hightemperature synthesis regime. Journal of Alloys and Compounds, 2011;509:786–789.
11. Aleksanyan A.G., Dolukhanyan S.K., Shekhtman V.Sh, Khasarov S.S., Ter-Galstyan O.P., Martirosyan M.V. Formation of alloys in the Ti–Nb system by hydride cycle method and synthesis of their hydrides in self-propagating high-temperature synthesis. Int. J. Hydrogen Energy, 2012;37:14234–14239.
12. Dolukhanyan S.K. Development of hydrogen material science in Armenia: synthesis of hydrides of transition metals and development of new technologies for obtaining alloys (Razvitie vodorodnogo materialovedeniya v ARMENII: sintez gidridov perekhodnykh metallov I razrabotka novykh technologii polucheniya splavov). Monograph edited by D.Sc., Prof. Buynivskogo A.S. “Rare and rare-earth metals”, Tomsk, 2014, pp. 329–351 (in Russ.).
13. Dolukhanyan S.K., Aleksanyan A.G., TerGalstyan O.P., Shekhtman V.Sh,. Mnatsakanyan N.L. Synthesis of Titanium Aluminides by Hydride Cycle Process. International Journal of Self Propagating HighTemperature Synthesis, 2014;23(2):78–82.
14. Muradyan G.N. Features of the formation of zirconium aluminides in the hydride cycle method (Osobennosti formirovaniya aluminidov tsirkoniya v rezhime gidridnogo tsikla). The chemical journal of Armenia, 2016;69(4):416–427 (in Russ.).
15. Dolukhanyan S.K., Ter-Galstyan O.P., Aleksanyan A.G., Hakobyan A.G., Mnatsakanyan N.L., Shekhtman V.Sh. Study of the formation of niobium aluminides in the hydride cycle. Russian Journal of Physical Chemistry B, 2015;9(5):702–709.
16. Edited by A. A. Borisov, L. De Luca, and A.G. Merzhanov. Self-Propagating High-Temperature Synthesis of Materials. Combustion Science and Technology Book Series^ Dolukhanyan, S.K. SHS of Binary and Complex Hydrides. New York: Taylor & Francis., 2002, pp. 219–237.
17. Dolukhanyan S.K. SHS method for obtaining hydrogen accumulators (SHS-metod polucheniya akkumulyatorov vodoroda). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2005;11;13–16 (in Russ.).
18. Merzhanov A.G., Borovinskaya I.P. Self propagating High Temperature Synthesis of Refractory Inorganic Composites (Samorasprostranyayuschiisya vysokotemperaturnyi sintez tugoplavkikh neorganicheskikh soedinenii). Dokl. AN SSSR, 1972;204(2):366–369 (in Russ.).
19. Lyakishev N.P. Diagram of the state of double metal systems (Diagramma sostoyaniya dvoinykh metallicheskikh system). Moscow: Mashinostroenie Publ., 2000;1–3;992 (in Russ.).
20. Tretyachenko L. Light Metal Systems. Al–Ti– Zr, Al–Nb–Ti. Heidelberg: Springer / GmbH, 2005, pp. 54–59; 334–379.
21. Lu Kai-li Lu Kai-li, Yang Feng, Xie Zhi-yun. Isothermal section of Al−Ti−Zr ternary system at 1073 K. Trans. Nonfer. Met. Soc. China, 2016;26:3052–3058.
22. Ding, X.F., Ding X.F., Lin J.P., Qi H., Zhang L.Q., Song X.P., Chen G.L. A closely-complete peritectic transformation during directional solidification of a Ti-45Al-8.5Nb alloy. J. Alloys and Compounds, 2011;509:404–409.
23. Dolukhanyan S.K., Ter-Galstyan O. P., Aleksanyan A. G., Muradyan G. N., Mnatsakanyan N. L. Formation of titanium and niobium aluminides induced by hydrogen in the hydride cycle. Russian Journal of Physical Chemistry B, 2017;11(2):272–281.
Review
For citations:
Dolukhanyan S.K., Muradyan G.N., Aleksanyan A.G., Ter-Galstyan O.P., Mnatsakanyan N.L. PHYSICAL AND CHEMICAL PECULIARITIES OF FORMATION OF ALUMINIDES OF IV–V GROUPS METALS IN HYDRIDE CYCLE. Alternative Energy and Ecology (ISJAEE). 2018;(13-15):122-140. (In Russ.) https://doi.org/10.15518/isjaee.2018.13-15.122-140