Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The Investigation of Fuel Type Influence on the Energy Indicators of the Electrochemical Generator in the Cogeneration Unit

https://doi.org/10.15518/isjaee.2018.16-18.012-022

Abstract

The paper presents a generic technique to calculate the consumption of synthetic gas and fuel for the specified electrical power, temperature in the anode fuel utilization factor, specific expenses of fuel equivalent to develop electric and thermal energy, power efficiency for various natural fuels (methane, coal, petroleum products, etc.) and synthesized ones (methanol, ethanol, etc.) in synthesis gas with subsequent use of it in the SOFC.

The paper researches into the influence of fuel types: hydrogen, methane, motor diesel fuel, ethanol, gasoline and methanol – on fuel utilization factor, specific expenses for the production of electrical and thermal energy, efficiencies of the catalytic burner, fuel cell solid-oxide battery and electrochemical generator. The overall level of fuel utilization for the cogeneration power plant based on SOFC with hydrogen fuel and methane surpasses the level of modern combined-cycle cogeneration plant, and with diesel, ethanol, gasoline, and methanol surpasses the level of cogeneration combined heat and power plant CHPP on the basis of the internal combustion engine.

The investigation has shown that the best fuel is hydrogen and the worst is methanol on the level of energy performance.

For hydrogen, fuel utilization factor and specific expenses of fuel for production of electric and thermal energy releasing in heat networks equal to 1; 0.122 kg equivalent fuel/kWh and 34 kg of equivalent fuel/GJ, respectively, while for methanol, these indicators equal to 0.359; 0.475 kg equivalent fuel/kWh and 83,7 kg of equivalent fuel/GJ. For other fuel types, these energy indicators lie between the specified values.

About the Authors

S. E. Shcheklein
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

D.Sc. in  Engineering,  Professor,  the  Head  of Atomic  Stations  and  Renewable  Energy Sources  Department,  Urals  Federal  University; a member of International Energy Academy; a member of the editorial board of “Institute of Higher Education News. Nuclear Power”; International Scientific Journal for Alternative Energy and Ecology (ISJAEE); “Nuclear  Power  Units  Heat  Engineering” USTU; Odessa National Polytechnic University  article  collection; Scientific Journal of “Energy Effectiveness and Analysis”. 

19 Mira St., Ekaterinburg, 620002, tel.: +7(343)375-95-08



A. M. Dubinin
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

D.Sc. in Engineering, Professor of Power Engineering and Thermal Engineering Department, UrFU. Ural Federal University Named after the First President of Russia B.N. Yeltsin.

19 Mira St., Ekaterinburg, 620002, tel.: +7(343)375-95-08



References

1. Lykova S.A. Highly efficient hybrid power generation systems based on fuel cells. Thermal Engineering, 2002;49(1):54–60 (in Eng.).

2. Sgobbi A. How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. International Journal of Hydrogen Energy, 2016;41(1):19–35 (in Eng).

3. Grigor'yants R.R. Thermodynamic model and analysis of hybrid power installations built around solidoxide fuel cells and gas-turbine units. Thermal Engineering, 2008;55(9):790–794 (in Eng.).

4. Dubinin A.M., Shcheklein S.E., Tuponogov V.G., Ershov M.I., Kagramanov Y.A. Experimental and theoretical study of the effectiveness of the production of hydrogen by steam conversion of methane using circulating fluidized bed technology. International Journal of Hydrogen Energy, 2016;41(20):8433–8437 (in Eng.).

5. Dubinin A.M. Modeling the process of producing hydrogen from methane. Theoretical Foundations of Chemical Engineering, 2013;47(6):697–701 (in Eng.).

6. Beznosova D.S. Prospects for using hybrid power installations on the basis of solid-oxide fuel cells integrated with intracycle coal gasification. Thermal Engineering, 2011;58(9):774–778 (in Eng.).

7. Dubinin A.M. Determining maximum capacity of an autothermal fluidized-bed gas generator. Thermal Engineering, 2009;56(5):421–425 (in Eng.).

8. Shigarov A.B. Modeling of membrane reactor for steam methane reforming: From granular to structuredcatalysts. Theoretical Foundations of Chemical Engineering, 2012;46(2):97–107 (in Eng.).

9. Kurganov V.A. High-Temperature HeatShielding Panels with Thermochemical Cooling Based on the Reaction of Steam Conversion of Methane. High Temperature, 2000;38(6):926–937 (in Eng.).

10. Lakhete P. Modeling process intensified catalytic plate reactor for synthesis gas production. Chemical Engineering Science, 2014;110:13–19 (in Eng.).

11. Kurteeva A.A. Single solid-oxide fuel cells with supporting Ni-cermet anode. High Temperature, 2011;47(12):1381–1388 (in Eng.).

12. Takeguchi T. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. Journal of Power Sources, 2002;112:588–595 (in Eng.).

13. Chen B. Exergy analysis and CO2 emission evaluation for steam methane reforming. International Journal of Hydrogen Energy, 2012;37(4):3191–3200 (in Eng.).

14. Yan Y. Properties of thermodynamic equilibrium-based methane autothermal reforming to generate hydrogen. International Journal of Hydrogen Energy, 2013;38(35):15744–15750 (in Eng.).

15. Barona J. Combustion of hydrogen in a bubbling fluidized bed, Combustion and Flame, 2009;156(5):975– 984 (in Eng.).

16. Peters R., Deja R., Blum L., Pennanen J., Kiviaho J., Hakala N. Analysis of Solid-Oxide Fuel Cell System Concepts with Anode Recycling. International Journal of Hydrogen Energy, 2013;(38):6809–6820 (in Eng.).

17. Halinen M., Saarinen I., Noponen M.,Vinke I.C., Kiviaho J. Experimental analysis on Performance and Durability of SOFT Demonstration unit. Fuel Cells, 2010;10(3):440–452 (in Eng.).

18. Halinen M., Thomann O., Kiviaho J. Effect of anode off-gas recycling on reforming of natural gas for solid oxide fuel cell system. Fuel Cells, 2012;12(5):754–760 (in Eng.).

19. Munts V.A., Volkova Y.V., Plotnikov N.S., Dubinin A.M., Tuponogov V.G., Chernishev V.A . Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of naturalgas. Thermal Engineering, 2015;62(11):779–784 (in Eng.) / (Munc V.A.. Volkova Yu.V., Plotnikov N.S. et al. Issledovanie harakteristik ehnergeticheskoj ustanovki 5 kVt na tverdookisnyh toplivnyh ehlementah s parovym riformingom prirodnogo gaza. Teploehnergetika, 2015;(11):15–20 (in Russ.).

20. Dubinin A.M., Shcheklein S.E. Mini coal-fired CHP plant on the basis of synthesis gas generator (CO + H2) and electrochemical current generator. International Journal of Hydrogen Energy, 2017;42:26048–26058 (in Eng.).

21. Dubinin A.M., Shcheklein S.E., TuponogovV.G., Ershov M.I. Mini CHP based on the electrochemical generator and impeded fluidized bed reactor for methane steam reforming (Mini TEHC na baze konvertora metana s zatormozhennym psevdoozhizhennym sloem i ehlektrohimicheskogo generatora). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2017;(19–21):95–105 (in Russ.)

22. Shcheklein S.E., Dubinin A.M. Solid wastes (SW) converting into electric and thermal energy using a gasifier and an electrochemical generator. WIT Transactions on Ecology and the Environment. WIT Press. Energy and sustainability, 2017;224:451–462 (in Eng.).

23. Zhang X., Chan S.H., Li G., Ho H.K., Li J., Feng Z. A review of integration strategies for solid oxide fuel cells. J.Power Sources, 2010;195:685–702 (in Eng.).

24. Stolyarevskiy A.Ya. Process of production of synthesysgas for hydrogen energy (Tekhnologiya polucheniya sintez-gaza dlya vodorodnoj ehnergetiki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2005;(22):26–32 (in Russ.).

25. Orhan M. F., Kahraman H., Babu B.S. Approaches for integrated hydrogen production based on nuclear and renewable energy sources: Energy and exergy assessments of nuclear and solar energy sources in the United Arab Emirates. International Journal of Hydrogen Energy, 2017;42:2601–2616 (in Eng.).

26. Shcheklein S.E., Dubinin A.M. Methanol Production Based on Direct-Flow Gas Generator and Nuclear Reactor. Atomic Energy, 2018;124(2):91–97.

27. Baskakov A.P. Heating and cooling of metals in the fluidized bed (Nagrev i ohlazhdenie metallov v kipyashchem sloe). Moscow: Metallurgiya Publ., 1974, 272 p. (in Russ.)

28. Karapetyants M.K. Chemical thermodynamics rd (Himicheskaya termodinamika): 3 ed. Мoscow: Himiya Publ., 1975, 584 p. (in Russ.)

29. Korovin N.V. Electrochemical power industry (Elektrohimicheskaya ehnergetika). Moscow: Energoatomizdat Publ., 1991, 264 p. (in Russ.)

30. Sobyanin V.A. High-temperature solid oxide fuel cells and methane conversion (Vysokotemperaturnye tverdookisnye toplivnye ehlementy i konversiya metana). Russian Chemical Journal (Journal of Russian Chemical Society named after D.I. Mendeleev), 2003;47(6):62–70 (in Russ.)

31. Thermal-physical properties of substabces (Teplofizicheskie svojstva veshchestv). Ed. by Vagraftic N.B. Мoscow: Gosenergoizdat Publ., 1956 (in Russ.).

32. Baskakov, A.P., Volkova, Y.V., Physicochemical Principles of Thermal Processes: A Handbook (Fiziko-himicheskie osnovy teplovyh processov). Moscow: Teplotekhnik Publ., 2013, 173 p. (in Russ.).

33. Yakovlev B.V. Increase in efficiency of central heating and heat supply systems (Povyshenie ehffektivnosti sistem teplofikacii i teplosnabzheniya). Moscow: Novosti teplosnabzheniya Publ., 2008, 448 p. (in Russ.).


Review

For citations:


Shcheklein S.E., Dubinin A.M. The Investigation of Fuel Type Influence on the Energy Indicators of the Electrochemical Generator in the Cogeneration Unit. Alternative Energy and Ecology (ISJAEE). 2018;(16-18):12-22. (In Russ.) https://doi.org/10.15518/isjaee.2018.16-18.012-022

Views: 819


ISSN 1608-8298 (Print)