

Experience and Prospects of Water Heating Using PV Panels
https://doi.org/10.15518/isjaee.2018.16-18.023-038
Abstract
The paper deals with the photovoltaic panels application for water heating purposes. We have developed and tested the mathematical models for traditional and PV-based water heaters. Modeling shows that the area ratio for PV-based and collector-based water heaters with close productivity is about 1.6–2.3 for Russian southern regions and 1.2–1.6 for northern ones. PV-based water heating systems are shown to have several advantages compared to collector-based ones, including close capital costs in Russian conditions and simpler installation and operation, especially in northern regions of the country.
The paper classifies the commercial controllers for PV-based water heating systems. Modern commercial PV water heating systems are supplied with maximum power point (MPP) tracker technology controllers. Cost for such special controllers is quite high, and several manufacturers make them. The most of manufacturers consider PV water heating systems as a part of “smart home” or way to utilize excess of energy produced by PV array. Thus, the researches of possible improvement and cost decrease for PV water heaters are actual. It is shown that the possible way to simplify and make cheaper the whole PV water heater is to make it without controller but to use constant resistance element as electric load. In this case, PV array productivity decrease can be compensated by additional PV panels in the array, and the year heat production is higher than for collector-based system with comparable capital cost.About the Authors
S. E. FridRussian Federation
Ph.D. in Engineering, Head of Laboratory, ScopusID: 6602192623.
13/2 Izhorskaya St., Moscow, 125412, tel.: +7 495 485 93 90
A. B. Tarasenko
Russian Federation
Senior Researcher, ResearcherID: E-2683-2014, ScopusID: 36773802600.
13/2 Izhorskaya St., Moscow, 125412, tel.: +7 495 485 93 90
References
1. Willems P. Renewable Energy Sources: Current Situation and Development Prospects. Energy Bulletin, 2008;(2):26–36.
2. Popel’ O.S., Frid S.E., Kolomiets Yu.G., Kiseleva S.V., Terekhova E.N. Atlas of Resources of Solar Energy on the Territory of Russia (Atlas resursov solnechnoi energii na territorii Rossii). Moscow: JIHT RAS, 2010 (in Russ.).
3. Kemp C.M. Apparatus for Utilizing the Sun’s rays for heating water. United States Patent No. 451384, F24J 2/05. – 1891.
4. Bainbridge D.A. The integral Passive Solar Water Heater Book. Solar Usage Now, 1981, 104 p. Available on: http://deltavolt.pe/documentos/Integral-Passive-Solar-Water-Heater-Book.pdf) (03.20.2018).
5. Walker F. Combined Solar and Artificial Heat Water Heater. United States Patent No. 735321; F24J 2/05, 1903.
6. Haskell C.L. Solar Heater. United States Patent No. 842658; F24J 2/05, 1907.
7. Bailey W.J. Solar Heater. United States Patent No. 966070; F24J 2/04, F24J 2/05, 1910.
8. Duffie J.A., Beckman W.A. Solar Engineering of Thermal Processes (3d ed.). Hoboken: John Wiley & Sons, 2013, 936 p.
9. Fanney A.H., Dougherty B.P. A Photovoltaic Solar Water Heating System. Trans. ASME. J. Solar Energy Eng., 1997;119(5):126–133.
10. Popel' O.S., Frid S.E., Shcheglov V.N., Suleimanov M.Zh., Kolomiets Yu.G., Prokopchenko I.N. A comparative analysis of the design features of solar collectors made in Russia and abroad. New technical solutions. Thermal Engineering, 2006;53(3):175–180.
11. Speyer E., Godel S. Solar collector. United States Patent No. 3227153; F24J 2/05, 1966.
12. Speyer E. Solar Energy Collection With Evacuated Tubes. Trans. ASME. J. Eng. Power, 1965;86(7):270–276.
13. Meyer J.-P. Power from the Tube. Sun & Wind Energy, 2003;(1):40–46.
14. Epp B. World Map of the Solar Thermal Industry. The disparity is growing. Sun & Wind Energy, 2010;(12):42–61.
15. Weiss W., Spork-Dur M., Mautnier F. Solar Heat Worldwide. Global Market Development and Trends in 2016. Detailed Market Figures 2015. 2017 edition [E-resource]. Available on: http://www.iea-shc.org/data/sites/1/publications/Solar-Heat-Worldwide-2017.pdf (03.20.2018).
16. Fanney A.H., Dougherty B.P. Photovoltaic solar water heating system. United States Patent No. 5293447; F24H 1/18, G05F 1/60, 1994.
17. Williams P.M., Klein S.A., Beckman W.A., Mitchell J.W. Modeling PV powered solar water heating systems using TRNSYS. American Solar Energy Society, SOLAR97, 1997;341–346.
18. Williams P.M. Development and Analysis Tool for Photovoltaic-Powered Solar Water Heating Systems: M.S. Thesis. University of Wisconsin. Madison. 1996.
19. Dougherty B.P., Fanney A.H., Richardson J.O. Field Test of a Photovoltaic Water Heater. ASHRAE Transactions, 2002;108(2):780–791.
20. Morrison G.L., Wood B.D. Packaged solar water heating technology twenty years of progress. Proceedings of ISES solar world congress on CD-ROM. Jerusalem. Israel, 1999.
21. Raisul, Islam M., Sumathy K., Ullah Khan S. Solar water heating systems and their market trends. Renewable and Sustainable Energy Reviews, 2013;17:1–25.
22. China: Challenges and Opportunities of World’s Largest Solar Thermal Market [E-resource]. Available on: http://www.solarthermalworld.org/content/china-challenges-and-opportunities-worlds-largest-solar-thermal-market (03.20.2018).
23. Flat plate collector sales in China reach a record 6 million m2 in 2017 [E-resource]. Available on: http://www.solarthermalworld.org/content/flat-plate-collector-sales-china-reach-record-6-million-m2-2017 (06.01.2018).
24. Tyagi V.V. Progress in solar PV technology: Research and achievement. Renewable and Sustainable Energy Reviews, 2013;20:443–461.
25. Placzek-Popko E. Top PV market solar cells 2016. Opto-Electronics Review, 2017;25(2):55–64.
26. Skandalos N., Karamanis D. PV glazing technologies. Renewable and Sustainable Energy Reviews, 2015;49:306–322.
27. Tarasenko A.B., Popel' O.S. Manufacturing technologies for photovoltaics and possible means of their development in Russia (review): Part 2. Modification of production technologies for photoelectric converters, development of contact structures, and choice of promising technologies for expansion of FEC production in Russia. Thermal Engineering, 2015;62(12):868-877.
28. Haegel N.M., Margolis R., Buonassisi T., Feldman D., Froitzheim A., Garabedian R., Green M., Glunz S., Henning H.-M., Holder B., Kaizuka I., Kroposki B., Matsubara K., Niki S., Sakurai K., Schindler R.A., Tumas W., Weber E.R., Wilson G., Woodhouse M., Kurtz S. Terawatt-scale photovoltaics: Trajectories and challenges. Science, 2017;356(6334):141–143.
29. Photovoltaics Report [E-resource]. Available on: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (06.01.2018).
30. Tarasenko A.B., Popel' O.S. Manufacturing technologies for photovoltaics and possible means of their development in Russia (review). Part 1: General approach to the development of photoelectric converters and basic silicon technologies, Thermal Engineering, 2015;62(11):825–832.
31. Morris G. Heating water, not as simple as it used to be. Solar Progress, 2014;(2):30–32.
32. Direktor L.B., Ivanin O.A. On the application of electric boilers in the energy complexes of small-scale power generation. Industrial power engineering, 2014;(12):23–27 (in Russ.).
33. GIS Renewable Energy Sources of Russia [E-resource]. Available on: http://gisre.ru/ (03.20.2018). Holladay M. Solar Thermal is Dead [E-resource]. Available on: http://www.greenbuildingadvisor.com/blogs/dept/musings/solar-thermal-dead (03.20.2018).
34. Holladay M. Solar Thermal Is Really, Really Dead [E-resource]. Available on: http://www.greenbuildingadvisor.com/blogs/dept/musings/solar-thermal-really-really-dead (03.20.2018).
35. JSC Military-industrial Corporation NPO Mashinostroyeniya. “Solol” Solar Collector [E-resource]. Available on: http://www.npomash.ru/service/ru/suncollector.htm (03.20.2018).
36. “Noviy Polus” company [E-resource]. Available on: http://www.newpolus.ru/ (03.20.2018).
37. Butuzov V.A. An analysis of Russian solar heating market (Analiz rossiiskogo rynka solnechnogo teplosnabzheniya). Energosovet, 2015;(1):53–56. (in Russ.).
38. On the mechanism for stimulating the use of renewable energy sources in the wholesale electricity and capacity market. Decree of the Government of the Russian Federation of May 28, 2013 No. 449 (O mekhanizme stimulirovaniya ispol'zovaniya vozobnovlyaemykh istochnikov energii na optovom rynke elektricheskoi energii i moshchnosti. Postanovlenie Pravitel'stva RF ot 28 maya 2013 g. № 449) [E-resource]. Available on: http://pravo.gov.ru/proxy/ips/?docbody=&nd=102165645&rdk=&backlink=1 (03.20.2018).
39. Hevel Group [E-resource]. Available on: http://www.hevelsolar.com/ (03.20.2018).
40. Meyer J.-P. Heating with PV. Economics of Electric Heating. A question of priorities. Sun & Wind Energy, 2015;(2):48–53.
41. Advanced Energy. AE PV Heater [E-resource]. Available on: https://www.advancedenergy.com/en/PV_Heater.html (03.20.2018).
42. Krannich. The Global PV Experts. PV Heater [E-resource]. Available on: https://de.krannich-solar.com/en/products/pv-heater.html (03.20.2018).
43. Thermo Dynamics Ltd. Solar Heating. PV Solar Boiler [E-resource]. Available on: http://www.thermo-dynamics.com/PV_SB_systems.html (03.20.2018).
44. My-PV. Hot-water from photovoltaics [E-resource]. Available on: http://www.my-pv.com/en/ (03.20.2018).
45. Autonomous solutions. Solar heating elements my-PV ELWA (Avtonomnye resheniya. Solnechnye TENy my-PV ELWA) [E-resource]. Available on: https://autonomno.ru/teplo/bez_gaza_bez_soglasovanij/elwa_hot_water_pv1/ (03.20.2018) (in Russ.).
46. Ellison B. Hot PVtm – solar PV hot water and much more. Solar Progress, 2014;(1):26–27.
47. Easy Warm. Power on your roof [E-resource]. Available on: http://www.easywarm.co.nz/ (03.20.2018).
48. Hirvonen J., Kayo G., Hasan A., Siren K. Zero energy level and economic potential of small-scale building-integrated PV with different heating systems in Nordic conditions. Applied Energy, 2016;167:255–269.
49. Sussex solar. PV Water Heating. Get hot water from your PV array with Solar iBoost+ [E-resource]. Available on: https://sussexsolar.com/pv-water-heating/ (03.20.2018).
50. Shrack technik. Energyguard Pro 3-phases PV-monitoring up to 50 kW [E-resource]. Available on: https://www.schrack.be/shop/energyguard-pro-3-phases-pv-monitoring-up-to-50-kw-pvc00002.html (03.20.2018).
51. WATTrouter – surplus power controller (WATTrouter – kontroller izlishkov elektroenergii) [E-resource]. Available on: http://www.wattrouter.ru/ (03.20.2018) (in Russ.).
52. Parra D., Walker G.S., Gillott M. Are batteries the optimum PV-coupled energy storage for dwellings? Techno-economic comparison with hot water tanks in the UK. Energy and Buildings, 2016;116:614–621.
53. Solar heating and hot water. Solar Kerberos (Solnechnoe otoplenie i GVS. Solar Kerberos) [E-resource]. Available on: http://solarcrown.ru/magazin2/folder/solnechnoye-otopleniye-i-gvs (03.20.2018) (in Russ.).
54. Your solar home (Vash solnechnyi dom) [E-resource]. Available on: http://www.solarhome.ru/ (03.20.2018) (in Russ.).
55. Yingli Solar. YGE 60 cell series 2. Proven performance and versatility [E-resource]. Available on: http://d9no22y7yqre8.cloudfront.net/assets/uploads/products/downloads/DS_YGE60CELL%20SERIES%202-29b_35mm_EU_EN_20170720_V04.pdf (03.20.2018).
56. Marken C., Sanchez J. PV vs. Solar Water Heating. Simple Solar Payback. Home power, 2008;(127):40–45.
57. TRNSYS – Transient System Simulation Tool [E-resource]. Available on: http://trnsys.com/ (03.20.2018).
58. User's Manual for TMY2s [E-resource]. Available on: http://rredc.nrel.gov/solar/pubs/tmy2/ (03.20.2018).
59. Meteonorm. Irradiation data for every place on Earth [E-resource]. Available on: http://www.meteonorm.com/ (03.20.2018).
60. Meteonorm. Irradiation data for every place on Earth [E-resource]. Available on: http://www.meteonorm.com/ (03.20.2018).
61. SPF. C1633. Solar Collector Factsheet. Atmosfera CBK-A-58-30 [E-resource]. Available on: http://www.spf.ch/fileadmin/daten/reportInterface/kollektoren/factsheets/scf1633en.pdf (03.20.2018).
Review
For citations:
Frid S.E., Tarasenko A.B. Experience and Prospects of Water Heating Using PV Panels. Alternative Energy and Ecology (ISJAEE). 2018;(16-18):23-38. (In Russ.) https://doi.org/10.15518/isjaee.2018.16-18.023-038