Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Изотопный обмен кислорода с протонпроводящими оксидами на основе скандата лантана

https://doi.org/10.15518/isjaee.2018.16-18.070-087

Полный текст:

Аннотация

Методом изотопного обмена кислорода с уравновешиванием изотопного состава газовой фазы получены температурные зависимости коэффициентов обмена и диффузии кислорода газовой фазы с протонпроводящими оксидами La1–xSrxScO3–δ (x = 0; 0,04; 0,09) в температурном интервале 600−900 ºC при давлении кислорода 1,01 кПа. Установлено, что с повышением содержания стронция в оксиде коэффициенты диффузии и обмена кислорода также повышаются. Определены скорости отдельных стадий обмена кислорода на поверхности исследуемых оксидов. Показано, что скоростьопределяющей стадией обмена кислорода на поверхности недопированного оксида LaScO3 является стадия инкорпорирования. В свою очередь, для La1–xSrxScO3–δ (x = 0; 0,04; 0,09) с ростом концентрации стронция разница между скоростями диссоциативной адсорбции и инкорпорирования кислорода уменьшается так, что для оксида La0,91Sr0,09ScO3–δ скоростьопределяющей стадией обмена становится стадия диссоциативной адсорбции кислорода. В работе анализируются возможные причины указанных отличий в кинетике обмена кислорода. С помощью полученных значений коэффициентов диффузии кислорода, пересчитанных в кислород-ионную проводимость с использованием уравнения Нернста-Эйнштейна, выполнено выделение вкладов кислород-ионной и протонной составляющей общей проводимости оксидов La1–xSrxScO3–δ (x = 0; 0,04; 0,09) во влажной восстановительной атмосфере (рН2О = 2,35 кПа, рО2 = 10–15 Па). Показано, что числа переноса протонов в температурном интервале 500–600 ºС близки к единице во влажной водородсодержащей восстановительной атмосфере.

Об авторах

А. С. Фарленков
Институт высокотемпературной электрохимии УрО РАН; Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
Россия

Андрей Сергеевич Фарленков - инженер/аспирант, Институт высокотемпературной электрохимии УрО РАН, ResearcherID: C-5426-2014 ScopusID: 56297375900 h-index 5.

Д. 20, ул. Академическая, Екатеринбург, 620990, тел.: +7(343)362-33-01, факс: +7(343)374-59-92; Д. 19, ул. Мира, Екатеринбург, 620002, тел.: +7(343)375-44-74



А. В. Ходимчук
Институт высокотемпературной электрохимии УрО РАН; Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
Россия

Анна Владимировна Ходимчук - инженер/аспирант, Институт высокотемпературной электрохимии УрО РАН, 8. h-index 2, ResearchID: L-6717-2017 ScopusID: 57188648623.

Д. 20, ул. Академическая, Екатеринбург, 620990, тел.: +7(343)362-33-01, факс: +7(343)374-59-92; Д. 19, ул. Мира, Екатеринбург, 620002, тел.: +7(343)375-44-74



Н. А. Шевырев
Институт высокотемпературной электрохимии УрО РАН; Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
Россия

Никита Алексеевич Шевырев - ст. лаборант, ИВТЭ УрО РАН, Research ID: N-2862-2018.

Д. 20, ул. Академическая, Екатеринбург, 620990, тел.: +7(343)362-33-01, факс: +7(343)374-59-92; Д. 19, ул. Мира, Екатеринбург, 620002, тел.: +7(343)375-44-74



А. Ю. Строева
Институт высокотемпературной электрохимии УрО РАН; Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
Россия

Анна Юрьевна Строева - канд. хим. наук, старший научный сотрудник, Институт высокотемпературной электрохимии УрО РАН, h-index 6, ResearchID: A-5663-2017 ScopusID: 8688371100.

Д. 20, ул. Академическая, Екатеринбург, 620990, тел.: +7(343)362-33-01, факс: +7(343)374-59-92; Д. 19, ул. Мира, Екатеринбург, 620002, тел.: +7(343)375-44-74



А. В. Фетисов
Институт металлургии УрО РАН
Россия

Андрей Вадимович Фетисов - д-р хим. наук, ведущий научный сотрудник, Институт металлургии Уральского отделения РАН, h-index 5, Scopus ID: 7004202727.

Д. 101, Амундсена, Екатеринбург, 620016, тел.: +7(343)267-91-24, факс: +7(343)267-91-86



М. В. Ананьев
Институт высокотемпературной электрохимии УрО РАН; Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
Россия

Максим Васильевич Ананьев - д-р хим. наук, зав. лабораторией ТОТЭ, директор ИВТЭ УрО РАН, h-index 10, Research ID: F-5104-2014 Scopus ID: 15061114600.

Д. 20, ул. Академическая, Екатеринбург, 620990, тел.: +7(343)362-33-01, факс: +7(343)374-59-92; Д. 19, ул. Мира, Екатеринбург, 620002, тел.: +7(343)375-44-74



Список литературы

1. Steele, B.C.H. Materials for fuel-cell technologies / B.C.H. Steele, A. Heinzel // Nature. – 2001. – No. 414. – P. 345–352.

2. Stempien, J.P. Solid oxide electrolyzer cell modeling: a review / J.P. Stempien, Q. Sunc, S.H. Chan // J. Pow. Technol. – 2013. – No. 93. – P. 216–246.

3. Bi, L. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides / L. Bi, S. Boulfrad, E. Traversa // Chem. Soc. Rev. – 2014. – No. 43. – P. 8255–8270.

4. Hübert, T. Hydrogen sensors – A review / T. Hübert [et al.] // Sensors and Actuators B. – 2011. – No. 157. – P. 329–352.

5. Malerød-Fjeld, H. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss / H. Malerød-Fjeld [et al.] // Nature Energy. – 2017. – No. 2. – P. 923–931.

6. Zhu, H. Equilibrium thermodynamic predictions of coking propensity in membrane-based dehydrogenation of hydrocarbons and alcohols / H. Zhu [et al.] // Catalysis Today. – In print. doi.org/10.1016/j.cattod.2017.10.036.

7. Kreuer, K.D. Proton-conducting oxides / K.D. Kreuer // Annu. Rev. Mater. Res. – 2003. – No. 33. – P. 333–359.

8. Ananyev, M.V. Isotopic exchange between hydrogen from the gas phase and proton-conducting oxides: theory and experiment / M.V. Ananyev, A.S. Farlenkov, E.Kh. Kurumchin // J. Hydrogen Energy. – 2018. – In print. doi: 10.1016/j.ijhydene.2018.05.150.

9. Fabbri, E. Towards the next generation of Solid Oxide Fuel Cells operating below 600°C with chemically stable proton-conducting electrolytes / E. Fabbri [et al.] // Advanced Materials. – 2012. – No. 24. – P. 195−208.

10. Norby, T. Ceramic proton and mixed protonelectron conductors in membranes for energy conversion applications / T. Norby // J. Chem. Engineering of Japan. – 2007. – No. 40. – P. 1166–1171.

11. Norby, T. Solid-state protonic conductors: principles, properties, progress and prospect / T. Norby // Solid State Ionics. – 1999. – No. 125. – P. 1–11.

12. Matsumoto, H. Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants / H. Matsumoto [et al.] // Electrochem. and Solid-State Letters. – 2007. – No. 10. – P. B77-B80.

13. Kuzmin, A.V. Specificity of synthesis and electrical conductivity of density ceramic of La1−xSrxScO3−α proton conducting oxides / A.V. Kuzmin // J. Hydrogen Energy. – 2018. – In print.

14. Bi, L. Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications / L. Bi, E. Traversa // Journal of Materials Research. – 2014. – No. 29. – P. 1−15.

15. Nomura, K. High temperature crystallographic study of (La0.9Sr0.1)MIIIO3–δ (MIII = Sc, In, and Lu) perovskite proton conductor / K. Nomura [et al.] // Solid State Ionics. – 2003. – No. 162–163. – P. 99–104.

16. Nomura, K. Neutron diffraction study of LaScO3-based proton conductor / K. Nomura, H. Kageyama // Solid State Ionics. – 2014. – No. 262. – P. 841–844.

17. Farlenkov, A.S. Local disorder and water uptake in La1–xSrxScO3–δ / A.S. Farlenkov [et al.] // Solid State Ionics. – 2017. – No. 306. – P. 82–88.

18. Farlenkov, A.S. Water uptake, ionic and hole transport in La0.9Sr0.1ScO3−δ / A.S. Farlenkov [et al.] // Solid State Ionics. – 2017. – No. 306. – P. 126–136.

19. Lybye, D. Proton and oxide ion conductivity of doped LaScO3 / D. Lybye, N. Bonanos // Solid State Ionics. – 1999. – No. 125. – P. 339–344.

20. Nomura, K. Proton conduction in doped LaScO3 perovskites / K. Nomura [et al.] // Solid State Ionics. – 2004. – No. 175. – P. 553–555.

21. Stroeva, A.Yu. Phase composition and conductivity of La1–xSrxScO3–α (x = 0.01–0.20) under oxidative conditions / A.Yu. Stroeva [et al.] // Russ. J. Electrochem. – 2012. – No. 48. – P. 509–517.

22. Stroeva, A.Yu. Nature of conductivity of perovskites La1−xSrxScO3−α (x = 0.01−0.15) under oxidative and reducing conditions / A.Yu. Stroeva, V.P. Gorelov // Russ. J. Electrochem. – 2012. – No. 48. – P. 1079–1085.

23. Okuyama, Y. Incorporation and conduction of proton in Sr-doped LaMO3 (M = Al, Sc, In, Yb, Y) / Y. Okuyama [et al.] // Electrochim. Acta. – 2014. – No. 125. – P. 443–449.

24. Farlenkov, A.S. Oxygen isotope exchange in doped calciumand barium zirconates / A.S. Farlenkov [et al.] // Solid State Ionics. – 2016. – No. 290. – P. 108–115.

25. Ananyev, M.V. Oxygen isotope exchange and diffusion in LnBaCo2O6−δ (Ln = Pr, Sm, Gd) with double perovskite structure / M.V. Ananyev [et al.] // Solid State Ionics. – 2017. – No. 304. – P. 96–106.

26. Ananyev, M.V. Oxygen isotope exchange in La2NiO4±δ / M.V. Ananyev [et al.] // Phys. Chem. Chem. Phys. – 2016. – No. 18. – P. 9102–9111.

27. Tropin, E.S. Surface defect chemistry and oxygen exchange kinetics in La2–xCaxNiO4+δ / E.S. Tropin [et al.] // J. Solid State Chem. – 2018. – No. 262. – P. 199–213.

28. Klier, K. Theory of exchange reactions between fluids and solids with tracer diffusion in the solid / K. Klier, E. Kucera // J. Phys. Chem. Solids. – 1966. – No. 27. – P. 1087–1095.

29. den Otter, M.W. Theory of oxygen isotope exchange / M.W. den Otter, B.A. Boukamp, H.J.M. Bouwmeester // Solid State Ionics. – 2001. – No. 139. – P. 89–94.

30. Yoo, C.-Y. Oxygen surface exchange kinetics of SrTi1–xFexO3–d mixed conducting oxides / C.-Y. Yoo, H.J.M. Bouwmeester // Phys. Chem. Chem. Phys. – 2012. – No. 14. – P. 11759–11765.

31. De Souza, R.A. The application of secondary ion mass spectrometry (SIMS) to the study of high temperature proton conductors (HTPC) / R.A. De Souza, J.A. Kilner, C. Jeynes // Solid State Ionics. – 1997. – No. 97. – P. 409−419.

32. Nivot, C. Oxygen diffusion in SrZrO3 / C. Nivot // Solid State Ionics. – 2009. – No. 180. – P. 1040−1044.

33. Vdovin, G.K. High-temperature proton conductors based on strontium and barium cerates: The interphase exchange and diffusion of oxygen / G.K. Vdovin, E.Kh. Kurumchin // Russ. J. Electrochem. – 2004. – No. 40. – P. 410−413.

34. Biesinger, M.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn / M.C. Biesinger [et al.] // Applied Surface Science. – 2010. – No. 257. – P. 887–898.

35. Uwamino, Y. X-ray photoelectron spectroscopy of rare-earth compounds / Y. Uwamino, T. Ishizuka, H. Yamatera // J. Elect. Spec. Rel. Phenom. – 1984. – No. 34. – P. 67–78.

36. Moulder, J.F. Handbook of X-ray photoelectron spectroscopy / J.F. Moulder [et al.] // Minnesota, USA: Perkin-Elmer Corp. – 1992.


Для цитирования:


Фарленков А.С., Ходимчук А.В., Шевырев Н.А., Строева А.Ю., Фетисов А.В., Ананьев М.В. Изотопный обмен кислорода с протонпроводящими оксидами на основе скандата лантана. Альтернативная энергетика и экология (ISJAEE). 2018;(16-18):70-87. https://doi.org/10.15518/isjaee.2018.16-18.070-087

For citation:


Farlenkov A.S., Khodimchuk A.V., Shevyrev N.A., Stroeva A.Y., Fetisov A.V., Ananyev M.V. Oxygen Isotope Exchange in Proton-Conducting Oxides Based on Lanthanum Scandates. Alternative Energy and Ecology (ISJAEE). 2018;(16-18):70-87. (In Russ.) https://doi.org/10.15518/isjaee.2018.16-18.070-087

Просмотров: 175


ISSN 1608-8298 (Print)