Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Oxygen Isotope Exchange in Proton-Conducting Oxides Based on Lanthanum Scandates

https://doi.org/10.15518/isjaee.2018.16-18.070-087

Abstract

The method of oxygen isotope exchange with the gas phase equilibration have been used to obtain the temperature dependences of the oxygen surface exchange and diffusion coefficients with proton-conducting oxides La1–xSrxScO3–δ (x = 0; 0.04; 0.09) in the temperature range of 600−900°C at oxygen pressure 1.01 kPa. The paper determines that the diffusion and oxygen surface exchange coefficients increase with the increasing of the strontium content in the oxides. We have found out the rates of the individual stages of the oxygen exchange process on the surface of the oxides. It is shown that oxygen incorporation is rate-determining stage of the oxygen exchange on the surface of the undoped oxide, whereas for the strontium-doped oxides La1–xSrxScO3–δ (x = 0; 0.04; 0.09) with increasing of strontium concentration, the difference between the rates of dissociative adsorption and oxygen incorporation decreases so that for the oxide La0,91Sr0,09ScO3–δ the stage of dissociative adsorption of oxygen becomes rate-determining stage. The paper analyzes the possible reasons of these differences in oxygen surface exchange kinetics. Moreover, the paper using the obtained oxygen diffusion coefficients that have been recalculated in the oxygen-ionic conductivities according to the Nernst-Einstein equation performs the contributions of the oxygen-ion and proton components of the total conductivity of oxides La1–xSrxScO3–δ (x = 0; 0.04; 0.09) in the wet reducing atmosphere (pH2O = 2.35 kPa, pO2 = 10−15 Pa). Proton transference numbers are shown to be close to unit in the temperature range of 500–600 °С at the wet hydrogen-containing reducing atmosphere.

About the Authors

A. S. Farlenkov
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Andrey Farlenkov - engineer / Ph.D. student, Institute of High-Temperature Electrochemistry, UB RAS, ResearcherID: C-5426-2014 ScopusID: 56297375900 h-index 5.

20 Academicheskaya St., Yekaterinburg, 620990, tel.: +7 (343) 362 33 01, fax: +7 (343) 374 59 92; 19 Mir St., Yekaterinburg, 620002,  tel.: +7 (343) 375 44 74



A. V. Khodimchuk
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Anna Khodimchuk - engineer/Ph.D. student, Institute of High-Temperature Electrochemistry, UB RAS. h-index 2, Research ID: L-6717-2017 Scopus ID: 57188648623.

20 Academicheskaya St., Yekaterinburg, 620990, tel.: +7 (343) 362 33 01, fax: +7 (343) 374 59 92; 19 Mir St., Yekaterinburg, 620002,  tel.: +7 (343) 375 44 74



N. A. Shevyrev
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Nikita Shevyrev - Senior Assistant, Institute of High Temperature Electrochemistry, UB RAS.    Research ID: N-2862-2018.

20 Academicheskaya St., Yekaterinburg, 620990, tel.: +7 (343) 362 33 01, fax: +7 (343) 374 59 92; 19 Mir St., Yekaterinburg, 620002,  tel.: +7 (343) 375 44 74



A. Yu. Stroeva
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Anna Stroeva - Ph.D. in Chemistry, Senior Researcher, Institute of High-Temperature Electrochemistry, UB RAS. h-index 6, Research ID: A-5663-2017 Scopus ID: 8688371100.

20 Academicheskaya St., Yekaterinburg, 620990, tel.: +7 (343) 362 33 01, fax: +7 (343) 374 59 92; 19 Mir St., Yekaterinburg, 620002,  tel.: +7 (343) 375 44 74



A. V. Fetisov
Institute of Metallurgy of the Ural Branch of the RAS
Russian Federation

Andrey Fetisov - D.Sc. in Chemistry, Head Scientist Researcher, Institute of Metallurgy of the Ural Branch of the RAS. h-index 5, Scopus ID: 7004202727.

101 Amundsen St., Yekaterinburg, 620016, tel.: +7 (343) 267 91 24, fax: +7 (343) 267 91 86



M. V. Ananyev
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Maxim Ananyev - D.Sc. in Chemistry, the Head of Laboratory of SOFC, Director of Institute of High Temperature Electrochemistry of the Ural Branch of the RAS. h-index 10, Research ID: F-5104-2014 Scopus ID: 15061114600.

20 Academicheskaya St., Yekaterinburg, 620990, tel.: +7 (343) 362 33 01, fax: +7 (343) 374 59 92; 19 Mir St., Yekaterinburg, 620002,  tel.: +7 (343) 375 44 74



References

1. Steele B.C.H., Heinzel A. Materials for fuel-cell technologies. Nature, 2001;414:345–352.

2. Stempien J.P., Sunc Q., Chan S.H. Solid oxide electrolyzer cell modeling: a review. Journal of Power Technologies, 2013;93:216–246.

3. Bi L., Boulfrad S., Traversa E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with protonconducting oxides. The Royal Society of Chemistry, 2014;43:8255–8270.

4. Hübert T., Boon-Brett L., Black G., Banach U. Hydrogen sensors – A review. Sensors and Actuators B, 2011;157:329–352.

5. Malerød-Fjeld H., Clark D., Yuste-Tirados I., Zanón R., Catalán-Martinez D., Beeaff D., Morejudo S.H., Vestre P.K., Norby T., Haugsrud R., Serra J.M., Kjølseth C. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2017;2:923–931.

6. Zhu H., Kee B.L., Karakaya C., O’Hayre R., Kee R.J. Equilibrium thermodynamic predictions of coking propensity in membrane-based dehydrogenation of hydrocarbons and alcohols. Catalysis Today, In print. doi.org/10.1016/j.cattod.2017.10.036.

7. Kreuer K.D. Proton-conducting oxides. Annual Review of Materials Research, 2003;33:333–359.

8. Ananyev M.V., Farlenkov A.S., Kurumchin E.Kh. Isotopic exchange between hydrogen from the gas phase and proton-conducting oxides: theory and experiment. International Journal of Hydrogen Energy, 2018;43:13373-13382.

9. Fabbri E., Bi L., Pergolesi D., Traversa E. Towards the next generation of Solid Oxide Fuel Cells operating below 600°C with chemically stable protonconducting electrolytes. Advanced Materials, 2012;24:195−208.

10. Norby T. Ceramic proton and mixed protonelectron conductors in membranes for energy conversion applications. Journal of Chemical Enginiring of Japan, 2007;40:1166–1171.

11. Norby T. Solid-state protonic conductors: principles, properties, progress and prospect. Solid State Ionics, 1999;125:1–11.

12. Matsumoto H., Kawasaki Y., Ito N., Enoki M., Ishihara T. Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochem. and SolidState Letters, 2007;10:B77-B80.

13. Kuzmin A.V. Specificity of synthesis and electrical conductivity of density ceramic of La1−xSrxScO3−α proton conducting oxides. International Journal of Hydrogen Energy, 2018: In print.

14. Bi L., Traversa E. Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. Journal of Materials Research, 2014;29:1−15.

15. Nomura K., Takeuchi T., Kageyama H., Miyazaki Y. High temperature crystallographic study of (La0.9Sr0.1)MIIIO3–δ (MIII = Sc, In, and Lu) perovskite proton conductor. Solid State Ionics, 2003;162–163:99–104.

16. Nomura K., Kageyama H. Neutron diffraction study of LaScO3-based proton conductor. Solid State Ionics, 2014;262:841–844.

17. Farlenkov A.S., Smolnikov A.G., Ananyev M.V., Khodimchuk A.V., Buzlukov A.L., Kuzmin A.V., Porotnikova N.M. Local disorder and water uptake in La1–xSrxScO3–δ. Solid State Ionics, 2017;306:82–88.

18. Farlenkov A.S., Putilov L.P., Ananyev M.V., Antonova E.P., Eremin V.A., Stroeva A.Yu., Sherstobitova E.A., Voronin V.I., Berger I.F., Tsidilkovski V.I., Gorelov V.P. Water uptake, ionic and hole transport in La0.9Sr0.1ScO3−δ. Solid State Ionics, 2017;306:126–136.

19. Lybye D., Bonanos N. Proton and oxide ion conductivity of doped LaScO3. Solid State Ionics, 1999;125:339–344.

20. Nomura K., Takeuchi T., Kamo S., Kageyama H., Miyazaki Y. Proton conduction in doped LaScO3 perovskites. Solid State Ionics, 2004;175:553–555.

21. Stroeva A.Yu., Gorelov V.P., Kuz’min A.V., Antonova E.P., Plaksin S.V. Phase composition and conductivity of La1–xSrxScO3–α (x = 0.01–0.20) under oxidative conditions. Russian Journal of Electrochemistry, 2012;48:509–517.

22. Stroeva A.Yu., Gorelov V.P. Nature of conductivity of perovskites La1−xSrxScO3−α (x = 0.01−0.15) under oxidative and reducing conditions. Russian Journal of Electrochemistry, 2012;48:1079–1085.

23. Okuyama Y., Kozai T., Ikeda S., Matsuka M., Sakai T., Matsumoto H. Incorporation and conduction of proton in Sr-doped LaMO3 (M = Al, Sc, In, Yb, Y). Electrochimica Acta, 2014;125:443–449.

24. Farlenkov A.S., Ananyev M.V., Eremina V.A., Porotnikova N.M., Kurumchin E.Kh., Melekh B.-T. Oxygen isotope exchange in doped calciumand barium zirconates. Solid State Ionics, 2016;290:108–115.

25. Ananyev M.V., Eremin V.A., Tsvetkov D.S., Porotnikova N.M., Farlenkov A.S., Zuev A.Yu., Fetisov A.V., Kurumchin E.Kh. Oxygen isotope exchange and diffusion in LnBaCo2O6−δ (Ln = Pr, Sm, Gd) with double perovskite structure. Solid State Ionics, 2017;304:96–106.

26. Ananyev M.V., Tropin E.S., Eremin V.A., Farlenkov A.S., Smirnov A.S., Kolchugin A.A., Porotnikova N.M., Khodimchuk A.V., Berenov A.V., Kurumchin E.Kh. Oxygen isotope exchange in La2NiO4±δ. Physical Chemistry Chemical Physics, 2016;18:9102–9111.

27. Tropin E.S., Ananyev M.V., Farlenkov A.S., Khodimchuk A.V., Berenov A.V., Fetisov A.V., Eremin V.A., Kolchugin A.A. Surface defect chemistry and oxygen exchange kinetics in La2–xCaxNiO4+δ. Journal of Solid State Chemistry, 2018;262:199–213.

28. Klier K., Kucera E. Theory of exchange reactions between fluids and solids with tracer diffusion in the solid. Journal of Physics and Chemistry of Solids, 1966;27:1087–1095.

29. den Otter M.W., Boukamp B.A., Bouwmeester H.J.M. Theory of oxygen isotope exchange. Solid State Ionics, 2001;139:89–94.

30. Yoo C.-Y., Bouwmeester H.J.M. Oxygen surface exchange kinetics of SrTi1–xFexO3–d mixed conducting oxides. Physical Chemistry Chemical Physics, 2012;14:11759–11765.

31. De Souza R.A., Kilner J.A., Jeynes C. The application of secondary ion mass spectrometry (SIMS) to the study of high temperature proton conductors (HTPC). Solid State Ionics, 1997;97:409−419.

32. Nivot C., Legros C., Lesage B., Kilo M., Argirusis C. Oxygen diffusion in SrZrO3. Solid State Ionics, 2009;180:1040−1044.

33. Vdovin G.K., Kurumchin E.Kh. Hightemperature proton conductors based on strontium and barium cerates: The interphase exchange and diffusion of oxygen. Russian Journal of Electrochemistry, 2004;40:410−413.

34. Biesinger M.C., Payne B.P., Grosvenor A.P., Lau L.W.M., Gerson A.R., Smart R.St.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 2010;257:887–898.

35. Uwamino Y., Ishizuka T., Yamatera H. X-ray photoelectron spectroscopy of rare-earth compounds. Journal of Electron Spectroscopy and Related Phenomena, 1984;34:67–78.

36. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray photoelectron spectroscopy. Minnesota, USA: Perkin-Elmer Corp., 1992.


Review

For citations:


Farlenkov A.S., Khodimchuk A.V., Shevyrev N.A., Stroeva A.Yu., Fetisov A.V., Ananyev M.V. Oxygen Isotope Exchange in Proton-Conducting Oxides Based on Lanthanum Scandates. Alternative Energy and Ecology (ISJAEE). 2018;(16-18):70-87. (In Russ.) https://doi.org/10.15518/isjaee.2018.16-18.070-087

Views: 811


ISSN 1608-8298 (Print)