Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ON THE HEATING OF AN APARTMENT HOUSE IN THE POWER-HOUSE COMPLEX

https://doi.org/10.15518/isjaee.2018.19-21.091-100

Abstract

The paper deals with the problem of large daily uneven energy consumption which leads to the need to change energy production within a day resulting in lower utilization of installed capacity, improving fuel consumption by thermal power plants. The use of electricity for heating solves the problem of the accumulation and subsequent application of electricity in the night hours of power system load failure with double tariff of the pricing principle. Electrical heating system efficiency is greatly increased when overheated buildings in the night period on 1–4 ºC that almost does not affect the comfort of the residency.

The paper proposes a scheme of a minor overheating building which leads to some energy consumption for heating, but reduces financial costs as a result of load transfer for the night period with low tariff and significant reducing electric power consumption for heating in the daytime period. The calculations using non-stationary thermal balance of the Yekaterinburg's apartment house with electric heating have showed that reduction of financial expenses for heating the 5.18–3.86 rub/m2 when overheated constructions building at 2–3 ºC is possible compared with direct connection without overheating in the night period; comparison with convection heating also demonstrates the appropriateness of the proposed scheme with daily electrical heating regulation.

About the Authors

A. N. Lyambel
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

Anastasiya Lyambel - Ph.D. Student, Department of Atomic Stations and Renewable Energy Sources, Urals Federal University.

Education: Urals Federal University, 2015.

Research interests:  energy saving; energy economy; participant in several implemented innovative projects, including the “Electro House for the Urals”.

Publications: 6.

19 Mira St., Ekaterinburg, 620002.

Tel.: +7(343)375 95 08.



V. M. Pahaluev
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

Valery Pakhaluev - D.Sc. in Engineering, Professor at Department of Nuclear Power Plants and Renewable Energy Sources, Urals Federal University; Member of International Academy of Natural and Social Sciences.

Education: Ural State Technical University, 1961.

Awards: Diploma of the Ministry of Energy and Housing and Utilities of the Sverdlovsk region, 2011.

Research   interests:   thermophysical and physical and chemical processes in thermal power generation and metallurgical engineering  with  the development of the physical foundations of alternative and renewable energy sources.

Publications: more than 90, including 1 monograph.

19 Mira St., Ekaterinburg, 620002.

Tel.: +7(343)375 95 08.



S. E. Shcheklein
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

Sergey  Shcheklein - Information about the author: D.Sc. in  Engineering,  Professor,  the  Head  of Atomic  Stations  and  Renewable  Energy Sources  Department,  Urals  Federal  University; a member of International Energy Academy; a member of the editorial board of  “Institute  of  Higher  Education  News. Nuclear  Power”;  International  Scientific Journal for Alternative Energy and Ecology (ISJAEE); “Nuclear Power Units Heat Engineering”   USTU;   Odessa   National Polytechnic  University  article  collection; Scientific Journal of “Energy Effectiveness and Analysis”.

Awards: Honored Power Engineer of the  Russian  Federation;  V.I.  Vernadsky National   Environmental   Award;   Medal “Veteran of Nuclear Energy and Industry”.

Education:  Urals  Polytechnic  Institute, 1972.

Research   interests:   nuclear   power units thermodynamics; questions of nuclear energy and thermophysics of the two-phase flows; NPP equipment lifetime enduring  and  reliability  increasing;  solar, wind and bioenergetics.

Publications: more than 350, including 2 monographs, 20 inventions.

19 Mira St., Ekaterinburg, 620002.

Tel.: +7(343)375 95 08.



References

1. Kazaryan V.A. The use of large-scale under-ground battery energy to regulate energy consumption inequality (Ispol'zovanie krupnomasshtabnyh podzemnyh akkumulyatorov ehnergonositelej dlya regulirovaniya neravnomernosti ehnergopotrebleniya). Izvestiya Rossijskoj akademii nauk. Ehnergetika, 2013;3:3–26 (in Russ.).

2. Ol'hovskij G.G., Kazaryan V.A., Stolyarevskij A.Ya. Methods for regulating consumption inequality (Metody regulirovaniya neravnomernosti ehlektropotrebleniya). Izhevsk: IKI Publ., 2012; 712 p. (in Russ.).

3. Lisin E.M., Zhovtyak P.G., Kurdyukova G.N., Anisimova Yu.A. Improving the economic sustainability of regional power systems in the face of rising energy consumption inequality (Povyshenie ehkonomicheskoj ustojchivosti regional'nyh ehnergeticheskih sistem v usloviyah rosta neravnomernosti ehnergopotrebleniya). Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta. Seriya: Ehkonomika i upravlenie, 2017;4(31):42–50 (in Russ.).

4. Shilkin N.V. Thermoset heating and cooling systems in buildings (Termoaktivnye sistemy otopleniya i ohlazhdeniya zdanij). AVOK, 2012;5:36–47 (in Russ.).

5. Ehlyakova I.D., Barahova V.V. Objective factors translate to consumer electric West jenergorajona Republic of Sakha (Ob"ektivnye faktory perevoda na ehlektrootoplenie potrebitelej zapadnogo ehnergorajona respubliki Saha). Ehkonomika i upravlenie, 2013;11(97):53–57 (in Russ.).

6. About the electric power industry: the law of the Russian Federation from March 26, 2003 No. 35-FZ (ed. on Jun 29, no. 96-FZ) (Ob ehlektroehnergetike: Zakon Rossijskoj Federacii ot 26 marta 2003. № 35-FZ (v red. ot 29.06.2012. № 96-FZ)). Sobranie zakonodatel'stva Rossijskoj Federacii, 2003, No. 13, Ar.1177. Available on: http://www.komi.fas.gov.ru/page/ (06.29.18.) (in Russ.).

7. Olesen B.W. Heat accumulation, heating and cooling office buildings (Teploakkumulyacionnye sistemy otopleniya i ohlazhdeniya pomeshchenij ofisnyh zdanij). AVOK, 2012;2:13–18 (in Russ.).

8. Kolarik J. Simulation of energy use, human thermal comfort and office work performance in buildings with moderately drifting operative temperatures. Energy and Buildings, 2011;43(11):2988–2997(in Eng).

9. SNiP 2.04.05-91 heating, ventilation and air conditioning (SNiP 2.04.05-91 Otoplenie, ventilyaciya i kondicionirovanie vozduha) (in Russ.).

10. Sokolov E.Ya. Thermofication and heat networks (Teplofikaciya i teplovye seti). Moscow: MEHI Publ., 2001; 422 p. (in Russ.).

11. Tabunshchikov Yu.A., Brodach M.M. Mathematical simulation and optimization of the thermal efficiency of buildings (Matematicheskoe modelirovanie i optimizaciya teplovoj ehffektivnosti zdanij). Moscow: AVOK-PRESS, 2002;194 p. (in Russ.).

12. Mohov L.M., Samarin O.O. Underfloor heating system (Sistemy napol'nogo otopleniya). AVOK, 2003;5:32–37 (in Russ.).

13. Pisarev E. Warm floor. Water or electric (Teplyi pol. Vodyanoi ili ehlektricheskii). Samizdat Publ., 2012; 48 p. (in Russ.).

14. Saharov I.A., Nizovcev M.I. Calculation of the mutual influence of thermal and design parameters of water floor heating (Raschet vzaimnogo vliyaniya teplovyh i konstruktivnyh parametrov vodyanogo teplogo pola). Polzunovskij vestnik, 2013;3(2):33–37(in Russ.).

15. Luk'yanov M.Yu. Water and infrared heatinsulated floor. Comparison of systems (Vodyanoi i infrakrasnyi teplyi pol. Sravnenie system). Innovacionnaya nauka, 2015;12(2):90–92 (in Russ.).

16. Vavilin K.V., Sursanov D.N. Comparison of heating systems using hot floor (Sravnenie otopitel'nyh sistem s ispol'zovaniem teplogo pola). Sovremennye tekhnologii v stroitel'stve. Teoriya i praktika, 2018;1:360–369 (in Russ.).

17. Sahibzadinov A.F. Warm floors. Tutoria (Teplye poly. Uchebnoe posobie). Moscow: Zastrojshchik Publ., 2008; 335 p. (in Russ.).

18. Olesen B.W. International standards for the indoor environment. Indoor Air, 2004;14(s7):18–26 (in Eng).

19. Olesen B.W., K. Sommer B. Düchting Control of slab heating and cooling systems studied by dynamic computer simulations. ASHRAE Transactions, 2000;108(2):646–707 (in Eng).

20. ISO 11855–3: Building Environment Design – Standards for the Design, Construction and Operation of Radiant Heating and Cooling Systems. Part 3: Design and dimensioning, 2012 (in Eng).

21. Olesen B.W., Curro Dossi F.C. Operation and control of activated slab heating and cooling systems. CIB World Building Congress, 2004 (in Eng).

22. Bodrov V.I., Koryagin M.V. Calculation method of the thermal regime of buildings during mass building “temperature slices” (Metodika rascheta teplovogo rezhima zdanii massovoi zastroiki v period “temperaturnyh srezov”). Izvestiya vysshih uchebnyh zavedenij. Stroitel'stvo, 2007;2:42–46 (in Russ.).

23. Lyambel' A.N., Pahaluev V.M., Shcheklein S.E. Analysis of electrical heating efficiency multi-family homes (Analiz ehffektivnosti ispol'zovaniya ehlektrootopleniya mnogokvartirnogo doma). NPK Perspektivnye ehnergeticheskie tekhnologii [Advanced energy technology]. Yekaterinburg: UrFU Publ., 2016; pp. 89–91(in Russ.).


Review

For citations:


Lyambel A.N., Pahaluev V.M., Shcheklein S.E. ON THE HEATING OF AN APARTMENT HOUSE IN THE POWER-HOUSE COMPLEX. Alternative Energy and Ecology (ISJAEE). 2018;(19-21):91-100. (In Russ.) https://doi.org/10.15518/isjaee.2018.19-21.091-100

Views: 810


ISSN 1608-8298 (Print)