Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

BIO-OIL PRODUCTION BY HYDROTHERMAL LIQUEFACTION OF MICROALGAE BIOMASS

https://doi.org/10.15518/isjaee.2018.22-24.068-079

Abstract

This article presents a new energy efficient installation created for the process of hydrothermal liquefaction of microalgae with heat recovery. The studying results of the microalgae biomass (Arthrospira platensis) hydrothermal liquefaction at a temperature of 280 °C (holding time is 1 h) are shown. By hydrothermal liquefaction, bio-oil was obtained with much higher content of carbon and lower content of oxygen and nitrogen than the original biomass. Bio-oil was obtained without the use of organic solvents. The output of bio-oil is 29.5%, the heat of combustion is 34.2 MJ / kg. Thermogravimetric analysis was carried out to evaluate the fractional composition of bio-oil. The fraction of bio-oil with evaporation temperature up to 400 °C is about 80 %. The output of the petrol fraction of bio-oil is 26%. The study first held the comparative thermodynamic estimates of energy consumption during hydrothermal liquefaction and drying microalgae biomass, as well as the contribution of thermal energy recovery to increasing the efficiency of hydro-thermal liquefaction. The article presents the results of calculations showing that due to heat recovery, hydrothermal liquefaction has high thermodynamic efficiency and is therefore a very promising way of processing the microalgae biomass for obtaining biofuel. According to the estimates, recuperation can save up to 35% of the thermal energy spent on hydrothermal liquefaction.

About the Authors

M. S. Vlaskin
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Mikhail Vlaskin - Ph.D. in Engineering, Head of the Energy Accumulating Materials Laboratory

13/2 Izhorskaya St., Moscow, 125412



A. V. Grigorenko
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Anatolii Grigorenko Researcher at the Energy Accumulating Materials Laboratory

13/2 Izhorskaya St., Moscow, 125412



N. I. Chernova
Joint Institute for High Temperatures of the Russian Academy of Sciences; Lomonosov Moscow State University
Russian Federation

Nadezhda Chernova - D.Sc. in Biology, Associate Professor, Senior Researcher at Renewable Energy Sources Laboratory (Lomonosov Moscow State University, Faculty of Geography)

13/2 Izhorskaya St., Moscow, 125412,

1 Leninskie Gori, Moscow, 119991



S. V. Kiseleva
Joint Institute for High Temperatures of the Russian Academy of Sciences; Lomonosov Moscow State University
Russian Federation

Sofia Kiseleva - Ph.D. in Physics and Mathematics, Senior Researcher at the Renewable Energy Sources Laboratory, Lomonosov Moscow State University, Faculty of Geography

13/2 Izhorskaya St., Moscow, 125412,

1 Leninskie Gori, Moscow, 119991



V. Kumar
Uttaranchal University
India

Vinod Kumar - Ph.D. in Chemistry, Assistant Professor, Department of Chemistry

Arcadia Grant, Chandanwari, Prem Nagar, Dehradun, Uttarakhand-248007



References

1. World Energy Outlook 2012. International Energy Agency. 2012. 690 p.

2. Adenle A.A., Haslam G.E., Lee L. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 2013;61:182–195.

3. Alam F., Date A., Rasjidin R., Mobin S., Moria H., Baqui A. Biofuel from AlgaeIs It a Viable Alternative? Procedia Engineering, 2012;49:221–227.

4. Raslavičius L., Semenov V.G., Chernova N.I., Keršys A., Kopeyka A.K. Producing transportation fuels from algae: In search of synergy. Renewable and Sustainable Energy Reviews, 2014;40:133–142.

5. Chernova N.I., Kiseleva S.V., Popel’ O.S. Efficiency of the biodiesel production from microalgae. Thermal Engineering, 2014;61(6):399–405.

6. Vigani M., Parisi C., Rodríguez-Cerezo E., Barbosa M.J., Sijtsma L., Ploeg M., Enzing C. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci. Technol., 2015:42(1):81–92.

7. Pittman J.K., Dean A.P., Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol., 2011;102(1):17–25.

8. Kumar V., Kumar A., Nanda M. Pretreated animal and human waste as a substantial nutrient source for cultivation of microalgae for biodiesel production. Environmental Science and Pollution Research, 2018;25(22):22052–22059.

9. Taleb A., Kandilian R., Touchard R., Montalescot V., Rinaldi T., Taha S., Takache H., et al. Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Bioresour Technol., 2016;218:480–490.

10. Hu X., Zhou J., Liu G., Gui B. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. JEnvS, 2016;46:83–91.

11. Neofotis P., Huang A., Sury K., Chang W., Joseph F., Gabr A., Twary S., et al. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research, 2016;15:164–178.

12. Courchesne N.M.D., Parisien A., Wang B., Lan C.Q. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol., 2009;141(1–2):31–41.

13. Zheng Y., Chi Z., Lucker B., Chen S. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour Technol., 2012;103(1):484–488.

14. Yee W. Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. Bioresour Technol., 2015;196:1–8.

15. Chernova N.I. Problems of obtaining thirdgeneration biofuel: the impact of stressors on the accumulation of neutral lipids in blue-green algae (cyanobacteria) (Problemy polucheniya biotopliva tret'ego pokoleniya: vozdejstvie stressorov na nakoplenie nejtral'nyh lipidov v sine-zelenyh vodoroslyah (cianobakteriyah). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;12(152):70–83 (in Russ.).

16. Salam K.A., Velasquez-Orta S.B., Harvey A.P. A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated coproducta review. Renewable and Sustainable Energy Reviews, 2016;65:1179–1198.

17. Vlaskin M.S., Chernova N.I., Kiseleva S.V., Popel’ O.S., Zhuk A.Z. Hydrothermal liquefaction of microalgae to produce biofuels: state of the art and future prospects. Thermal Engineering, 2017;64(9):627–636.

18. Chernova N.I., Kiseleva S.V., Vlaskin M.S., Rafikova Y.Y. Renewable energy technologies: enlargement of biofuels list and co-products from microalgae. MATEC Web Conf., 2017;112:10010.

19. Elliott D.C. Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels. Algal Research, 2016;13:255–263.

20. Jena U., Das K.C. Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-Oil Production from Microalgae. Energy & Fuels, 2011;25(11):5472–5482.

21. Jena U., Das K.C., Kastner J.R. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol., 2011;102(10):6221–6229.

22. Chernova N.I., Kiseleva S.V. Microalgae biofuels: Induction of lipid synthesis for biodiesel production and biomass residues into hydrogen conversion. International Journal of Hydrogen Energy, 2017;42(5):2861–2867.

23. Patent 2322489 C1 Russian Federation, IPC6 C12N 1/12, C12R 1/89 Strain Arthrospira platensis (Nordst.) Geitl. 1/02-T / 03-5 producer of protein biomass (SHtamm Arthrospira platensis (Nordst.) Geitl. 1/02-T/03-5 – producent belkovoj biomassy)/ Korobkova TP, Chernova NI, Kiseleva SV, Zaitsev SI; applicants and patent owners Korobkova TP, Chernova NI, Kiseleva SV, Zaitsev SI – no. 2006122671/13; claimed. 27.06.06; publ. 2008/04/20, Bul. no. 11. – 7 with: 3 ill., 3 tab. (in Russ.).

24. Zarrouk C. Contribution a l'etude d’ une cyanophycee. Influence de diverse facteursphysiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardner) Geitler: University of Paris, France; 1966.

25. Toor S.S., Reddy H., Deng S., Hoffmann J., Spangsmark D., Madsen L.B., Holm-Nielsen J.B., et al. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions. Bioresour Technol., 2013;131:413–419.

26. Biller P., Madsen R.B., Klemmer M., Becker J., Iversen B.B., Glasius M. Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition. Bioresour Technol., 2016;220:190–199.

27. Lu J., Zhang J., Zhu Z., Zhang Y., Zhao Y., Li R., Watson J., et al. Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction. Energy Convers Manage, 2017;134:340–346.

28. Zhou Y., Schideman L., Yu G., Zhang Y. A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy & Environmental Science, 2013;6(12):3765–3779.

29. Bagnoud-Velásquez M., Schmid-Staiger U., Peng G., Vogel F., Ludwig C. First developments towards closing the nutrient cycle in a biofuel production process. Algal Research, 2015;8:76–82.

30. Garcia Alba L., Torri C., Fabbri D., Kersten S.R.A., Brilman D.W.F. Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chem. Eng. J., 2013;228:214–223.

31. Biller P., Ross A.B., Skill S.C., Lea-Langton A., Balasundaram B., Hall C., Riley R., et al. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 2012;1(1):70–76.

32. Lopez Barreiro D., Bauer M., Hornung U., Posten C., Kruse A., Prins W. Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Research, 2015;9:99–106.

33. Chen L., Zhu T., Fernandez J.S.M., Chen S., Li D. Recycling nutrients from a sequential hydrothermal liquefaction process for microalgae culture. Algal Research, 2017;27:311–317.

34. Leng L., Li J., Wen Z., Zhou W. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour Technol., 2018;256:529–542.

35. Valdez P.J., Nelson M.C., Wang H.Y., Lin X.N., Savage P.E. Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass Bioenergy, 2012.;46:317–331.


Review

For citations:


Vlaskin M.S., Grigorenko A.V., Chernova N.I., Kiseleva S.V., Kumar V. BIO-OIL PRODUCTION BY HYDROTHERMAL LIQUEFACTION OF MICROALGAE BIOMASS. Alternative Energy and Ecology (ISJAEE). 2018;(22-24):68-79. (In Russ.) https://doi.org/10.15518/isjaee.2018.22-24.068-079

Views: 1967


ISSN 1608-8298 (Print)