

GROWTH PROCESSES OF SUBGRAIN AND MORPHOLOGY EVOLUTION IN THE SYNTHESIS OF Β-SiC FILMS AT (111) Si IN THE ATMOSPHERE OF METHANE
https://doi.org/10.15518/isjaee.2018.22-24.096-106
Abstract
By the methods of transmission electron microscopy, high energy electron diffraction, atomic force microscopy, and Auger electron spectroscopy, the article studies the phase composition, orientation, substructure, and morphology of the films formed during pulsed photon treatment (PPT) by radiation of xenon lamps of silicon (111) Si substrates in an atmosphere of methane. We have established that in the range of the energy density of radiation (Ep) supplied to the substrate with a thickness of 0.45 μm for 3 s from 269 to 284 J cm-2 the oriented nanocrystalline films are formed on both surfaces of the substrates both from the irradiated and non-irradiated side β-SiC thickness of about 150 nm. In this case, the synthesis of films on the irradiated side is carried out with the possible participation of photon activation of processes and on the reverse side – only by thermal activation (short-term heat treatment (SHT). With an increase in the energy density of radiation in β-SiC films, the average subgrain size on the irradiated side is shown to increase from 4.2 nm (Ep = 269 J ·cm-2) to 7.9 nm (Ep = 284 J ·cm-2) and on the non-irradiated side 3.9 to 7.0 nm respectively. The surface roughness of the β-SiC surface proceeds consequentially on the irradiated side from 19 nm (Ep = 269 J ·cm-2) to 60 nm (Ep = 284 J ·cm-2) and on the non-irradiated side from 11 nm to 56 nm respectively. Based on the temperature dependences of the average grain size and roughness, we have estimated the apparent activation energies of the processes. The activation energy of subgrain β-SiC growth is practically independent of the activation method and is 1.3 eV. The activation energy for the evolution of roughness is 2.5 eV at a PPT and 3.5 eV at a SHT.
About the Authors
V. О. KuzminaRussian Federation
Veronika Kuzmina - Researcher
54a Starye Bol’sheviki St., Voronezh, 394064
S. A. Soldatenko
Russian Federation
Sergey Soldatenko - Ph.D. in Physics and Mathematics, Assistant Professor, Voronezh State Technical University
54a Starye Bol’sheviki St., Voronezh, 394064,
14 Moskovskaya Av., Voronezh, 394026
A. А. Sinelnikov
Russian Federation
Alexandr Sinelnikov - Ph.D. in Physics and Mathematics, director of the Center for Collective Use of Scientific Equipment
1Universitetskaya Square, Voronezh, 39401
References
1. O'Neill M. Silicon carbide-based devices increase the efficiency of solar energy conversion systems (Ustroistva na osnove karbida kremniya povyshayut KPD sistem reobrazovaniya solnechnoy energii). Power electronics, 2009;(1):8−12 (in Russ.).
2. Lebedev A.A. Evergreen semiconductor (Vechnozelenyi poluprovodnik). Chemistry and Life, 2006;(4):14−19 (in Russ.).
3. Luchinin V.V., Tairov Yu.N. Domestic semiconductor silicon carbide: a step to parity (Otechestvennyi poluprovodnikovyi karbid kremniya: shag k paritetu). Modern electronics, 2009;(7):12−15 (in Russ.).
4. Cheng L., Pan M., Scofield J., J.Steckl A. Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si3N4 / Si Substrates for Robust Microelectromechanical Systems Applications. Journal of Electronic Materials, 2002;31(5):361−365.
5. Chen Y. Heteroepitaxial growth of 3C-SiC using HMDS by atmospheric CVD. J. Mater. Sci. and Eng., 1999;61−62:579−582.
6. Hatanaka Y. Experiments and analyses of SiC thin film deposition from organo-silicon by a remote plasma method. Thin Solid Films, 2000;(2):287−291.
7. Ellison A. Epitaxial growth of SiC in a chimney CVD reactor. J. Cryst. Growth, 2002;(1−3):225−238.
8. Luo M. C. Epitaxial growth and characterization of SiC on C-plane sapphire substrates by ammonia nitridation. J. Cryst. Growth, 2003;(1−2):1−8.
9. Attenberger W., Lindner J., Cimalla V., Pezoldt J. Structural and morphological studies of the initial stages in a solid-state molecular beam epitaxy of SiC on (111) Si. J. Materials Science and Engineering: B, 1999;61−62:544−548.
10. Shimizu H., Hisada K. Hetero-Epitaxial Growth of 3C-SiC on Carbonized Silicon Substrates. Materials Science Forum, 2003;433−436:229−232.
11. Kukushkin S.A., Osipov A.V., Feoktistov N.A. Synthesis of epitaxial silicon carbide films by the substitution of atoms in the silicon lattice (Sintez epitaksial'nykh plenok karbida kremniya metodom zameshcheniya atomov v kristallicheskoy reshetke kremniya). Physics of the solid body, 2014;56(8):1457−1485 (in Russ.).
12. Ferro G. 3C-SiC Heteroepitaxial Growth on Silicon: The Quest for Holy Grail. Critical Reviews in Solid State and Materials Sciences, 2015;(40):56−76.
13. Bittencourt C. Reaction of Si (100) with SilaneMethane Low-Power Plasma; SiC Buffer layer formation. Journal of Applied Physics, 1999;86:4643−4648.
14. Ievlev V.M., Rubtsov V.I., Kushchev S.B., Sarykalin V.N., Soldatenko S.A. Composition and structure of silicides formed by pulsed photonic processing of titanium films on a single crystal to amorphous silicon (Sostav i struktura silitsidov obrazuyushchikhsya pri impul'snoi fotonnoi obrabotke plenok titana na monokristallicheskom i amorfnom kremnii). FHOM, 1997;(4):62−67 (in Russ.).
15. Ievlev V.M., Kushchev S.B., Sanin V.N. Solidphase synthesis of silicides during pulsed photonic processing of Si-Me heterostructures (Me: Pt, Pd, Ni, Mo, Ti) (Tverdofaznyi sintez silitsidov pri impul'snoi fotonnoi obrabotke geterosistem Si-Me (Me: Pt, Pd, N i, Mo, Ti)). FHOM, 2002;(1):27−31 (in Russ.).
16. Ievlev V.M., Kushchev S.B., Rudneva I.G., Serbin O.V., Soldatenko S.A. Synthesis of iridium silicides for pulsed photonic processing of metal films on silicon (Sintez silitsidov iridiya pri impul'snoi fotonnoi obrabotke plenok metalla na kremnii). Bulletin of VSTU: Material Science, 2002;(1.11):87−93 (in Russ.).
17. Borisenko V. E. Solid-State Processes in Semiconductors with Pulsed Heating (Tverdofaznye protsessy v poluprovodnikakh pri impul'snom nagreve). Minsk: Nauka i Tekhnika Publ., 1992; 247 p. (in Russ.)
18. Ievlev V.M., Il'in V.S., Kushchev S.B., Soldatenko S.A., Lukin A.N., Belonogov Ye.K. Synthesis of nanostructured SiC films during pulsed photon processing of Si in a carbon-containing medium (Sintez nanostrukturirovannykh plenok SiC pri impul'snoi fotonnoi obrabotke Si v uglerodsoderzhashchei srede). Surface. X-ray, synchrotron and neutron studies, 2009;(10):48−53 (in Russ.).
19. Kushchev S.B., Soldatenko S.A. Synthesis of SiC films on Si under pulsed photon processing and rapid thermal annealing in a carbon-containing medium (Sintez plenok SiC na Si pri impul'snoi fotonnoi obrabotke i bystrom termicheskom otzhige v uglerodsoderzhashchei srede). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2011;(7):18−22 (in Russ.).
20. Plowder Diffraction File. Alphabetical Index Inorganic. Pensilvania: ICPDS, 1997.
21. Bockstedte M., Mattausch A., Pankratov O. Ab initio study of the migration of intrinsic defects in 3C-SiC. Physical Review, 2003;(B 68):205201-1−205201-17.
22. Van Dijen F.K., Metselaar R. The Chemistry of the Carbothermal Synthesis of / 3-SIC: Reaction Mechanism, Reaction Rate and Grain Growth. Journal of the European Ceramic Society, 1991;(7):177−184.
23. Pelleg J. Springer International Publishing AG. 2017; 443 p.
24. Sinelnikov B.M. Tarala V.A., Kasharina L.A., Pichugin R.V., Mitchenko I.S. Model of electrical conductivity of amorphous silicon carbide films from the viewpoint of a fractal-cluster model (Model' elektroprovodnosti amorfnykh plenok karbida kremniya s pozitsii fraktal'no-klasternoi modeli). Bulletin of the North-Caucasian Technical University, 2007;1(10):16−19 (in Russ.).
25. Pantea C., Voronin G.A., Zerda T.W., Zhang J., Wang L., Wang Y., Uchida T., Zhao Y. Kinetics of SiC formation during high P T reaction between diamond and silicon. Diamond & Related Materials, 2005;(14):1611−1615.
Review
For citations:
Kuzmina V.О., Soldatenko S.A., Sinelnikov A.А. GROWTH PROCESSES OF SUBGRAIN AND MORPHOLOGY EVOLUTION IN THE SYNTHESIS OF Β-SiC FILMS AT (111) Si IN THE ATMOSPHERE OF METHANE. Alternative Energy and Ecology (ISJAEE). 2018;(22-24):96-106. (In Russ.) https://doi.org/10.15518/isjaee.2018.22-24.096-106