Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

LITHIUM ENRICHING BY ISOTOPE 7Li WITH ELECTROMEMBRANE METHOD

https://doi.org/10.15518/isjaee.2018.22-24.107-118

Abstract

The need for using isotopes in the nuclear power engineering, medicine, as well as in the sphere of control of engineering and construction facilities is increasing annually. However, the isotope separation methods do not allow to meet the need for production of a significant list of isotopes, including the purity of lithium isotopes. The process of amalgamation to date is the main technology of enrichment of 7Li in practical use. Other methods have very low separation efficiency and are not suitable for mass production. The present work is devoted to a new method for enriching the isotope 7Li, in parallel, the work presents the method of separating lithium isotopes by amalgamation modified by authors. The study relates to physical chemistry, in particular to electromigration processes and methods for separating lithium isotopes. A new promising approach for separating Li isotopes is the electrodialysis process using an ionic liquid as an electrolyte. Data on the relevance and uses of 7Li isotopes are given, the existing methods and criteria for the separation of lithium isotopes are considered. The article briefly describes the principle of the new technology, the regimes of enrichment experiments and the details of analysis of products obtained. Moreover, the new technology demonstrates the good environmental characteristics, it is amenable to mass production and has very low power consumption. However, it should be also emphasized that ionic liquids are very sensitive to impurities which inevitably appear in the electrolyte during separation process. One of the most important characteristics of isotope separation methods and technologies is the specific energy consumption, so currently the problem of reducing energy consumption is acute, for which it is necessary to create new methods for separation and purification of isotope systems and modernization of technologies already introduced in industry. The proposed method for enriching the 7Li isotope is carried out by controlling the process of electromigration of lithium ions through ion-exchange membranes in the electrolytic cell compartments. The work in the long-term future can ensure an increase in the efficiency of enrichment process for the 7Li isotope and a decrease in specific energy costs.

About the Authors

A. V. Gabrielyan
Sci.-Ind. ECOATOM LLC
Armenia

Armine Gabrielyan - Ph.D. Student

1 Adanai St., Yerevan, 0082



М. A. Kazaryan
Physical Institute. P.N. Lebedev of the Russian Academy of Sciences
Russian Federation

Mishik Kazaryan - D.Sc. in Physics and Mathematics

53 Leninsky Av., Moscow, 119991



A. G. Martoyan
Sci.-Ind. ECOATOM LLC
Armenia

Haykanush Martoyan - M.Sc. Student, Ecoatom

1 Adanai St., Yerevan, 0082



V. I. Sachkov
Siberian Physical-Technical Institute of Tomsk State University
Russian Federation

Victor Sachkov - D.Sc. in Chemistry, Head of the Laboratory

1 Novosobornaya Sq., Tomsk, 634050



G. A. Martoyan
Sci.-Ind. ECOATOM LLC
Armenia

Gagik Martoyan - Ph.D. in Chemistry

1 Adanai St., Yerevan, 0082



References

1. Yoshinobu Y. Studies on Isotope Separation of lithium by Electromigration in Fused lithium Bromide and Potassium Bromide Mixture. Enrichment of lithium7. Journal of Nuclear Science and Technology, 1969;6(12):698–702.

2. Makoto F., Yasuhiko F., Masao N., Makoto O. Isotope Effects in Electrolytic Formation of Lithium Amalgam. Journal of Nuclear Science and Technology, 1986; 23(4):330–337

3. Klemm, A. Molten Salt Chemistry; M. Blamder (Ed.). Interscience Publishers, Inc., New York, 1964; 642 p.

4. Sachkov V.I., Andrienko O.S., Kazaryan M.A., Malinovskaya T.D., Kabaev S.T., Knyazev A.S., Mal'kov V.S. Selection of light isotopes in condition the formation in the phase boundary (Selektsiya legkikh izotopov v usloviyakh formirovaniya granitsy razdela faz). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2007;6(50):60–68 (in Russ.).

5. Zenzai К., Yanase S., Zhang Y., Oi T. Lithium Isotope Effect Accompanying Electrochemical Insertion of Lithium into Liquid Gallium. Progress in Nuclear Energy, 2010;50:461–467.

6. Kim D. Lithium isotope separation on a monobenzo-15-crown-5 resin. Journal of Radioanalytical and Nuclear Chemistry, 1991;150(2):417–426.

7. Mouri M., Yanase S.T. Observation of lithium isotope effects accompanying electrochemical insertion of lithium into zinc. J. Nucl. Sci. Technol., 2008;45:384–389.

8. Abroskin I.E. Patent RU 2216391: Method and installation for the enrichment of lithium-7 isotope (Sposob i ustanovka obogashcheniya izotopa litiya-7). 2001 (in Russ.).

9. Icupov V.P. Mitrofanova R.P., Chupakhina L.E., Lyakhov N.Z., Aleksandrov A.B., Belozerov I.M., The separation coefficients of lithium isotopes in chemical isotope exchange. (Koeffitsienty razdeleniya izotopov litiya pri khimicheskom izotopnom obmene). Khimiya v interesakh ustoichivogo razvitiya, 2001;9:183–198 (in Russ.).

10. Katsuyuki O., Yoshiharu T., Hideaki T., Fukuoaka. Patent 4931153 United States IPC C25D 3/66, 204/39 no. 233,625: Electrolytic Treatment of Radioactive Liquid Waste to Remove Sodium, 1990.

11. Martoyan G., Intsheyan S. Tonikyan S., Demirchyan M. and Guiragossian Z. Patent 2004/005586, no. PCT: World Intellectual Property Organization IPC C25C1/100, Electrolytic Method of the Extraction of Metals, 2004.

12. Hoshino T. Basic Technology for 6Li Enrichment Using an Ionic-Liquid Impregnated Organic Membrane. Journal of Nuclear Materials, 2011;417(1):696–699.

13. Martoyan G.A. US Patent Application 20130233720 A1, IPC C25C5/02, no. 13/663,418,: Extraction of Metals, 2013.

14. Martoyan G., Kalugin М., Gabrielyan A. and Martoyan A. Prospects of lithium enrichment on 7Li isotope by method of controlled ions electromigration. IOP Conf. Series: Materials Science and Engineering, 2016;112:012035(1–5).

15. Brozek K. Lithium Isotope Enrichment: Feasible Domestic Enrichment Alternatives Department of Nuclear Engineering University of California, Berkeley, 2012-Report UCBTH-12-005.

16. Dvinskikh E.M. Prospects for the production of lithium and its compounds of Russian spodumene raw materials (Perspektivy proizvodstva litiya i ego soedinenii iz spodumenovogo syr'ya Rossii). Khimiya v interesakh ustoichivogo razvitiya, 2012;20:49–53 (in Russ.).

17. Guo G.Z, Zaijun L., Jie Y. Advance in Lithium Isotope Separation. Progress in Chemistry, 2011;23(9):1892–1905.

18. Sun X.L., Zhou W., Gu L., Qiu D., Ren D.H., Gu Z.G. Liquid–liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2′-binaphthyldiyl-17-crown-5/. Journal of Nuclear Science and Technology, 2015;52(3):332–341.

19. Symons E.A. Lithium Isotope Separation. A Review of Possible Techniques. Atomic Energy of Canada Limited, 1985;14–16.

20. Dmitriev S.N., Milanov M.V., Maslov O.D. Electromigration method in free electrolyte in radiochemical researches (Elektromigratsionnyi metod v svobodnom elektrolite v radiokhimicheskikh issledovaniyakh). Radiokhimiya 2, 2000;42:97–105 (in Russ.).

21. Hagiwara Z. Theoretical Treatment of IonExchange Systems Used for Lithium Isotope Separation. Journal of Nuclear Science and Technology, 1969;6(9):508–513.

22. Raizen M., Klappauf B. Magnetically activated and guided isotope separation. New Journal of Physics, 2012;14:023059(12).

23. Fam Tkhi L.N. Shaposhnik V., Makarova M. Separation of sodium and calcium cations by electrodialysis with ion-exchange membranes. Sorption and chromatographic processes, 2010;10(2):246–252. (in Russ.)

24. Laskorin B.N. Demineralization by Electrodialysis Method (Demineralizatsiya metodom elektrodializa). Gosatomizdat Publ.,1963; 361 p. (in Russ.).

25. Shaposhnik V.A. Water demineralization by electrodialysis using intermembrane filling with ion exchangers (Demineralizatsiya vody elektrodializom s primeneniem mezhmembrannoi zasypki ionoobmennikami). Zhurn. prikl. Khimii, 1973;46(12):2659– 2663 (in Russ.).

26. Zemany P.D. Determination of microgram quantities of potassium by X-Ray emission spectrography of ionexchange membranes. Analyt. Chem., 1958;30(2):299–300.

27. Laskorin B.N., Smirnova N.M., Gantman M.N. Ion exchange membranes and their application (Ionoobmennye membrany i ikh primenenie). Gosatomizdat Publ., 1967; 161 p. (in Russ.).

28. Shaposhnik V.A., Eliseeva T.V., Tekuchev A.Yu., Lushchik I.G. Lightweight bipolar ion electrochemistry in glycine solutions through ion-selective membranes (Oblegchennaya elektrokhimiya bipolyarnykh ionov v rastvorakh glitsina cherez ionoselektivnye membrany. Elektrokhimiya, 2001;57(2):195–201(in Russ.).

29. Rozhkova M.V., Shaposhnik V.A., Strygina I.P., Artemova L.V. Separation of cations with different charges during electrodialysis using complexation (Razdelenie kationov s raznym zaryadom pri elektrodialize s ispol'zovaniem kompleksoobrazovaniya). Elektrokhimiya, 1996;32(2):261–264 (in Russ.).

30. Nishizawa K., Takano T. Extractive Separation of Lithium Isotopes Using Benzo-15-Crown-5. Effect of Salt Concentration. Separation Science and Technology, 1988;23( 6–7):751–757.


Review

For citations:


Gabrielyan A.V., Kazaryan М.A., Martoyan A.G., Sachkov V.I., Martoyan G.A. LITHIUM ENRICHING BY ISOTOPE 7Li WITH ELECTROMEMBRANE METHOD. Alternative Energy and Ecology (ISJAEE). 2018;(22-24):107-118. (In Russ.) https://doi.org/10.15518/isjaee.2018.22-24.107-118

Views: 1687


ISSN 1608-8298 (Print)