Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ON POTENTIAL OF USING WIND TURBINES WITH COAXIAL WIND ROTORS FOR AUTONOMOUS POWER SUPPLY

https://doi.org/10.15518/isjaee.2018.25-30.025-033

Abstract

The paper presents the experimental research results for the horizontal-axis wind turbine with coaxial wind rotors. It is assumed that such coaxial layout of the wind turbine can be used for designing of the wind energy systems with relatively low capacity and limited location area since the coaxial systems have advantages in overall dimensions and maximum using of the swept area. Possibility of coaxial horizontal-axis wind turbines usage is determined by positive or negative effect of turbines on each other. Literature review shows that closely spaced wind turbines can generally improve flow characteristics under certain conditions and consequently increase wind energy system efficiency. We have carried out the experiments in T-5 wind tunnel with two coaxial model two-bladed wind turbines which rotate in opposite directions. The generator of the first turbine and first turbine itself are located on the same shaft in the test section of wind tunnel. The second generator is in a lower compartment of the experimental setup and is connected by the transmission. We have measured the dynamic, energy and frequency characteristics of wind energy systems based on created experimental setup. A Pitot tube and automatic metering devises have measured the dynamic parameters and energy performance respectively. A frequency counter has saved all of the data obtained with the laser frequency measurement technique. The experiment has some specific technical features so the data received need to be corrected. The coaxial wind turbine power has decreased in comparison to isolated wind turbine at low wind speed. The return flows reinforce turbulence so wind speed falls. If wind speed increases, the impact of the return flows decreases, the coaxial wind turbine capacity significantly grows and exceeds isolated turbine capacity. The possibility of using wind turbines with coaxial wind rotors for autonomous power supply is shown. Such wind turbines are perspective and require more detailed analysis.

About the Author

L. I. Knysh
Oles Gonchar Dnepropetrovsk National University
Ukraine

Liudmyla Knysh - D.Sc. in Engineering, Professor, Chair of the Department of Aerohydromechanics and Energy&Mass Transfer

72 Gagarin Av., Dnipro, 49010



References

1. Bud'ko V.I., Kudrja S.A., Pepelov A.V. Current state and development of renewable energy (Sovremennoe sostoyanie i razvitie vozobnovlyaemoi energetiki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2017;(4–6):130–141 (in Russ.).

2. Islam M.R., Mekhilef S., Saidur R. Progress and recent trends of wind energy technology. Renewable & Sustainable Energy Reviews, 2013;(21):456–468.

3. Golovko V.M., Kohanjevych V.P., Shyhajlov M.O., Bud'ko V.I. The influence of rotor orientation parameters of the constructive scheme «tail oblique hinge» over static characteristics of wind turnines (Vplyv parametriv systemy orijentacii' rotora z vykorystannjam konstruktyvnoi' shemy “hvist na kosomu sharniri” na statychni harakterystyky VEU). Vidnovliuvana Enerhetyka (Renewable energy), 2016;1(44):45–54 (in Ukr.).

4. Golovko V.M., Kohanjevych V.P., Shyhajlov M.O., Marchenko N.V. The influence of rotor system orientation parameters using the constructive scheme of the spring tail over static characteristics of wind turnines (Vplyv parametriv systemy orijentacii' rotora z vykorystannjam konstruktyvnoi' shemy pidpruzhynenogo hvosta na statychni harakterystyky vitroustanovky). Vidnovliuvana Enerhetyka (Renewable energy), 2015;3(42):30–39 (in Ukr.).

5. Eriksson S., Bernhoff H., Leijon M. Evaluation of different turbine concepts for wind power. Renewable & Sustainable Energy Reviews, 2008;(12):1419–1434.

6. Kudrja S.O., Tuchynskyj B.G., Ivanchenko I.V., Petrenko K.V. Wind energy potential estimation for the Chernobyl nuclear power plant exclusion zone (Ocinka vitrovogo energetychnogo potencialu zony vidchuzhennja ChAES). Vidnovliuvana Enerhetyka (Renewable energy), 2016; 3(46):44–49 (in Ukr.).

7. Tuchinskij B.G. Mathematical models of some optimizing tasks for wind turbines disposition (Matematicheskie modeli nekotoryh optimizatsionnyh zadach rasstanovki vetrovyh elektroustanovok). Vidnovliuvana Enerhetyka (Renewable energy), 2013; 1(32):52–57 (in Russ.).

8. Sørensen B., Renewable Energy: its Physics, Engineering, Use, Environmental Impacts, Economy, and Planning Aspects. Elsevier Academic Press, New York, 2004.

9. Solomin E.V. About the arrangement of wind turbines on the buildings and constructions (O razmeshhenii vetroenergeticheskih ustanovok na zdaniyah i sooruzheniyah). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;(9):42–45 (in Russ.).

10. Coleman C.P. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research. NASA Technical Paper 3675, March 1997. – P. 32.

11. Tescione G., Ragni D., He C., Simao Ferreira C.J., van Bussel G.J.W. Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy, 2014;(70):47–61.

12. Dabiri J.O. Potential order-of-magnitude enhancement of wind farm power density via counterrotating vertical-axis wind turbine arrays. Journal of Renewable and Sustainable Energy, 2011;(3):043104.

13. Zanforlin S., Nishino T. Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines. Renewable Energy, 2016;(99):1213–1226.

14. Lam H.F., Peng H.Y. Measurements of the wake characteristics of coand counter-rotating twin H-rotor vertical axis wind turbines. Energy, 2017;(131):13–26.

15. Ahmadi-Baloutaki M., Carriveau R., Ting D.SK. A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations. Renewable Energy, 2016;(96):904–913.

16. Knysh L.I., Goman O.G. The influence of some geometrical parameters on the energy indicators of the vertical axis wind turbines (Vliyanie nekotoryh geometricheckih parametrov na energeticheskie pokazateli vetrodvigatelei s vertikal'noi os'u vrashcheniya). Vidnovliuvana Enerhetyka (Renewable energy), 2017;4(51):59–66 (in Russ.).

17. Abramovskij E.R., Lychagin N.N. Problems of optimization of wind turbine parameters (Problemy optimizatcii parametrov vetryanyh dvigatelei). Dnepropetrovsk, Nauka i obrazovanie Publ., 2014; 274 р. (in Russ.).

18. Sun Zh. Improved fixed point iterative method for blade element momentum computations. Wind Energy, 2017;20(9):1585–1600.

19. Tarasov S.V., Redchic D.A., Polevoj O.B., Chashina I.B., Moiseenko S.V. Computational fluid dynamics for wind energy problems (Vychislitel'naya gidrodinamika na sluzhbe vetroenergetiki). Bulletin of Dnipropetrovsk University. Series: Mechanics, 2016;5(24)38–48 (in Russ.).

20. Dhert T., Ashuri T., Martins J.R.R.A. Aerodynamic shape optimization of wind turbine blades using a Reynolds-averaged Navier–Stokes model and an adjoint method. Wind Energy, 2017;20(5):909–926.

21. Troldborg N., Raul A., Forsting M. A simple model of the wind turbine induction zone derived from numerical simulations. Wind Energy, 2017;12(20):2011–2020.

22. Ramos-García N., Ramos‐García N., Hejlesen M.M., Sørensen J.N., Walther J.H. Hybrid vortex simulations of wind turbines using a three-dimensional viscous–inviscid panel method. Wind Energy, 2017;20(11):1871–1889.

23. Robert E. Sheldahl, Paul C. Klimas. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines – Sandia National laboratories. Energy report, 1981; 120 p.

24. Hansen MO. Aerodynamics of wind turbine. UK: Earthscan; 2008

25. Eunkuk S., Seungmin L., Byeongho H., Soogab L. Characteristics of turbine spacing in a wind farm using an optimal design process. Renewable Energy, 2014;(65):245–249.

26. Kaplja E.V. The results of experimental researches on the rotation frequency of dual horizontal-axis wind rotors (Rezul'taty eksperimental'nyh issledovanii chastoty vrashcheniya dvoinogo gorizontal'no-osevogo vetrokolesa), International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(17–18):30–33 (in Russ.).

27. Erohin F.A. Researches of horizontal axes threeblades wind turbine (Issledovanie gorizontal'no-osevoi trehlopastnoi vetroenergeticheskoi ustanovki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(17–18):38–41 (in Russ.).

28. Dorzhiev S.S., Bazarova E.G., Gorinoy K.A. The axis accelerators of the low-potential wind flow (Osevye uskoriteli nizkopotentcial'nyh vetrovyh potokov). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(7):37–47 (in Russ.).

29. Sha Wei, Zhao Jingshan, Han Qinkai, Chu Fulei Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty. Renewable Energy, 2015;(78):60–67.

30. Ignat'ev S.G. The capacity factor as a measure of the efficiency of the wind power plant (Koefficient ispol'zovaniya ustanovlennoi moshchnosti kak kriterii effektivnosti vetroenergeticheskoi ustanovki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;(5–6):28–38 (in Russ.).


Review

For citations:


Knysh L.I. ON POTENTIAL OF USING WIND TURBINES WITH COAXIAL WIND ROTORS FOR AUTONOMOUS POWER SUPPLY. Alternative Energy and Ecology (ISJAEE). 2018;(25-30):25-33. (In Russ.) https://doi.org/10.15518/isjaee.2018.25-30.025-033

Views: 674


ISSN 1608-8298 (Print)