Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

BIOMASS GAS GENERATOR STOVES

https://doi.org/10.15518/isjaee.2018.25-30.060-072

Abstract

The work refers to the field of thermochemical processes of the biomass conversion into energy, in particular to the creation of gas-generator stoves operating on biomass for cooking. In view of the high energy efficiency and environmental friendliness gas-burning stoves significantly exceed the traditional direct combustion biomass kilns. The theoretical analysis of the processes of gasification and combustion of fuel flowing in the stove is considered. The  stove is considered as a reversed microgasifier with an open top. Gasification is carried out in a vertical microgasifier of a dense layer of fuel with fuel ignition from above and air supply from below. The thermal processes taking place in the microgasifier can be divided into three stages: partial gasification of biofuel, complete gasification of the biochar obtained, direct combustion of the biochar. The pilot samples of a number of stoves with a reactor volume of 5.5 to 9.7 liters were made and pilot tests were carried out for the various types of biofuel (pellets from softwood, trimmed pine saw-timbers, wood chips from hardwood, briquettes from straw, sunflower husks, buckwheat husks). As a result of the tests it was found that the efficiency of the stoves is about 30% which is approximately 3 times more than that of traditional direct combustion furnaces, and the average thermal power of the gas-generator stoves was 0.71–1.78 kW which corresponds to the thermal power of household stoves operating on natural gas. The fuel consumption and the specific burning rate of the fuel are determined by the air supply. For approximate calculations, you can take a fuel consumption of 1 kg / hour. The specific intensity of combustion for the tested fuels varied in the range 27.5–60.6 kg / (m2 · h). The use of the thermal insulation of the hull makes it possible not only to reduce significantly heat losses to the environment but also to avoid burns if the person touches the stove accidentally. The stoves have the following advantages: ecological compatibility; the economy; mobility. Prospective consumers of stoves are the residents of non-gasified areas, summer residents, tourists.

About the Authors

V. P. Klius
The Institute of Renewable Energy of Ukraine National Academy of Sciences
Ukraine

Volodymyr Klius - Ph.D. in Engineering, Senior Researcher, Head of Department of Renewable Organic Energy Carriers

20A Gnata Chotkevicha str., Kyiv



S. V. Klius
The Institute of Renewable Energy of Ukraine National Academy of Sciences
Ukraine

Sergiy Klius - Ph.D. in Engineering, Senior Researcher, Department of Renewable Organic Energy Carriers

20A Gnata Chotkevicha str., Kyiv



N. M. Zhovmir
The Institute of Renewable Energy of Ukraine National Academy of Sciences
Ukraine

Mykola Zhovmir - Ph.D. in Engineering, Senior Researcher at the Department of Renewable Organic Energy Carriers, IRE NAS of Ukraine, Associate Professor of the Department of Renewable Energy Sources of Kyiv Polytechnic Institute

20A Gnata Chotkevicha str., Kyiv



A. G. Didkоvska
The Institute of Renewable Energy of Ukraine National Academy of Sciences
Ukraine

Аnna Didkоvska - Ph.D. in Engineering, Researcher of the Department of Renewable Organic Ener gy Carriers

20A Gnata Chotkevicha str., Kyiv



References

1. The Global Alliance for the Clean Culinary Products [E-resource]. Available on: http: www.cleancookstoves.org. – The title from the screen (25.01.2018) (in Eng.).

2. Twidell J., Wear A. Renewable energy sources (Vozobnovlyaemye istochniki energii). Moscow: Energoatomizdat Publ., 1990; 391 p. (in Russ.).

3. Belonio A.T. Rice husk gas stove handbook. Central Philippine University, 2005; 153 p. (in Eng.).

4. Karp I.N., Martsevoj E.P., Pianykh K.E., Antoshchuk T.A., Pianykh K.K. An investigation and introduction of gasification processes for coals and biomass with the aim of replacing of natural gas (Issledovanie i vnedrenie processov gazifikatsii uglei i biomassy s tsel’u zameshcheniya prirodnogo gaza). Energotechnologii i resursosberejenie, 2014;(4):3–11(in Russ.).

5. Kremneva K.V. Increasing the efficiency of a two stage gasification process of finely dispersed biomass for cogeneration units of low power (Pidvyshchennja efectyvnosti dvostadijnogo protsesu gazyfikatsii dribnodyspersnoi biomasy dlja kogeneratsijnych ustanovok maloi potuzhnosti): Avtoref. dis. kand. teh. nauk. Dnipro, 2015 (in Ukr.).

6. Klius S.V. Energy-efficient conversion of biomass into gas fuel and biocoal in dense layer bad gasifier (Energoefectyvne peretvorennja biomasy v gorjuchyj gaz i biovugillja v gazogeneratorach shchiljnogo sharu palyva): Avtoref. dis. kand. teh. nauk. Kyiv, 2016 (in Ukr.).

7. Pianykh K.E. Development of scientific bases of technologies for replacing of natural gas with alternative fuels (Rozvytok naukovykh osnov tekhnologij zamishchennja pryrodnogo gazu alternatyvnymy palyvamy): Avtoref. dis. dokt. teh. nauk. Kyiv, 2017 (in Ukr.).

8. Zabarny G.N., Klius S.V., Dovzhenko D.S. The use of the plant waste for the energy production (Ispolzovanie rastitelnyh otkhodov dla proizvodstva energii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2011;(8):100–106 (in Russ.).

9. Klius S.V., Zabarny G.N. Estimation and forecast of the solid biofuel potential in Ukraine (Otsenka i prognoz potentsiala tviordogo biotopliva Ukrainy). The compressor and power engineering (Kompressornoje i energeticheskoje mashinostrojenije), 2011;2(24):8–13 (in Russ.).

10. Kremneva E.V. Development of energy-saving technology of bi-phase biomass gasification for cogeneration plants (Razrabotka energosberegayushchei tehnologii dvuhstadiinoi gazifikatsii biomassy dla kogeneratsionnyh ustanovok). East-European Journal of Advanced Technologies, 2014;6/8(72):40–47 (in Russ.).

11. Kremneva E.V. An investigation of the process of pyrolysis of biomass in a dense layer, taking into account the secondary reaction of decomposition of resin (Issledovanie protsessa piroliza biomassy v plotnom sloe s uchotom vtorichnoi reaktsii razlozheniya smoly). Technical Thermophysics and Industrial Heat Power Engineering: a collection of scientific papers (Technicheskaya teplofizika i promyshlennaya teploenergetika: sbornik nauchnych trudov), 2011;(3):142–154 (in Russ.).

12. Karp I.N., Pianykh K.E., Antoshchuk T.A., Lysenko A.A. The results of laboratory and industrial tests of gas generators of periodic type action (Rezul’taty laboratornyh i promyshlennyh ispytanii gazogeneratorov periodicheskogo tipa deistviya). Engineering and Physics Journal (Inzhenerno-fizicheskii zhurnal), 2015;88(3):722–729 (in Russ.).

13. Pjanykh K.E. Gasification as a method of waste treatment (Gazifikatsiya kak metod pererabotki othodov). Energotekhnologii i resursosberezhenie, 2015;(2):12–17 (in Russ.).

14. Klius V.P., Klius S.V.; the applicant and the patent holder The Institute of Renewable Energy of the National Academy of Sciences of Ukraine. Patent 122843 Ukraine, IPC (2017.01) F 24 B 1/00; F 24 C 15/00. The household gas-generator stove (Plita bytovaja gazogeneratornaja) / 2018, Bul. no. 2; 4 p. (in Russ.).

15. Islamov S.R. On the new concept of coal use (O novoi kontseptsii ispolzovaniya uglya). Coal (Ugol’), 2007;(5):67–69 (in Russ.).

16. Stepanov S.G., Islamov S.R., Morozov A.B. The technology of combined production of semi-coke and combustible gas and coal (Tehnologiya sovmeshchonnogo proizvodstva polukoksa i goryuchego gaza i uglya). Coal (Ugol’), 2002;(6):27–29 (in Russ.).

17. Islamov S.R. The energotechnological processing of coals (Energotechnologicheskaya pererabotka uglei). – Krasnoyarsk: Polikor Publ., 2010; 224 p. (in Russ.).

18. Islamov S.R. An energy-efficient use of brown coal based on the concept of “Thermocox” (Energoeffectivnoe ispolzovanie buryh uglei na osnove kontseptsii “Termokoks”): Avtoref. dis. dokt. tech. nauk. Krasnoyarsk, 2010 (in Russ.).

19. Groo A.A. The intensification of heat and mass transfer processes at layer coal gasification using reverse blowing (Intensifikatsiya protsessov teploi massoobmena pri sloevoi gazifikatsii uglya s ispolzovaniem obratnogo dut’a): Avtoref. dis. kand. tech. nauk. Novosibirsk, 2007 (in Russ.).

20. Pomerantsev V.V., Arefiev K.I., Ahmedov D.B. Fundamentals of Practical Combustion Theory (Osnovy prakticheskoi teorii goreniya). Leningrad: Energoatomizdat Publ., 1986; 312 p. (in Russ.).

21. Yavorsky I.A. The physical and chemical bases of combustion of solid fuels and graphites (Fiziko-himicheskie osnovy gorenia tverdych iskopaemyh topliv i grafitov). Novosibirsk: Nauka Publ., 1973; 291 p. (in Russ.).

22. Kantorovich B.V. Fundamentals of the theory of combustion and gasification of solid fuel (Osnovy teorii goreniya i gazifikatsii tverdogo topliva). Moscow: Izd. AN SSSR Publ, 1958; 593 p. (in Russ.).

23. Lavrov N.V., Shurygin A.P. Introduction to the theory of combustion and gasification of fuel (Vvedenie v teoriu gorenia i gazifikatsii topliva). Moscow: Izd. AN SSSR Publ, 1962; 215 p. (in Russ.).

24. GOST R 50696-2006. Gas domestic appliances for cooking. General technical requirements and test methods (Pribory gazovye bytovye dla prigotovleniya pishchi. Obshchie tehnicheskie trebovoniya i metody ispytanii). Impl. 2007-01-01. Moscow: Standardinform Publ., 2006; 76 p. (in Russ.).

25. GOST R 54212-2010. Solid biofuel. The methods of sample preparation (Biotoplivo tverdoe. Metody podgotovki prob). Enter. 2012-07-01. Moscow: Standardinform Publ., 2012; 15 p. (in Russ.).

26. Solid biofuel. The determination of moisture content by drying. Part 1. Total moisture. Standard method: GOST R 54186-2010 (EN 14774-1: 2009) (Biotoplivo tverdoe. Opredelenie soderzhaniya vlagi vysushivaniem. Chast’ 1. Obshchaya vlaga. Standartnyi metod: GOST R 54186-2010 (EN 14774-1: 2009). Impl. 2012-07-01. Moscow: Standardinform Publ., 2012; 7 p. (in Russ.).

27. Solid biofuel. The definition of ash content: GOST R 54185-2010 (EN 14775: 2009) (Biotoplivo tverdoe. Opredelenie zol’nosti: GOST R 54185 2010 (EN 14775: 2009). Impl. 2012-07-01. Moscow: Standardinform Publ., 2012; 8 p. (in Russ.).

28. Solid biofuel. Specifications and fuel classes. Part 1. General requirements: GOST R 54220-2010 (ЕN 14961-1: 2010) (Biotoplivo tverdoe. Tehnicheskie harakteristiki i klassy topliva. Chast’ 1. Obshchie trebovaniya: GOST R 54220-2010 (EN 14961-1:2010). Impl. 2012-07-01. Moscow: Standardinform Publ., 2012; 42 p. (in Russ.).

29. Osmak A.A., Seregin A.A. The vegetable biomass as an organic fuel (Rastitelnaya biomassa kak organicheskoe toplivo). East European Journal of Advanced Technologies, 2014;2/8(68):57–61 (in Russ.).

30. The thermal calculation of boilers (normative method) (Teplovoi raschet kotlov (normativnyi metod). – 3rd ed. SPb: Publishing housе of NPO CKTI (Izd-vo NPO CKTI), 1998; 256 p. (in Russ.).


Review

For citations:


Klius V.P., Klius S.V., Zhovmir N.M., Didkоvska A.G. BIOMASS GAS GENERATOR STOVES. Alternative Energy and Ecology (ISJAEE). 2018;(25-30):60-72. (In Russ.) https://doi.org/10.15518/isjaee.2018.25-30.060-072

Views: 883


ISSN 1608-8298 (Print)