Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

MANUFACTURING GASEOUS PRODUCTS BY PYROLYSIS MICROALGAE BIOMASS

https://doi.org/10.15518/isjaee.2018.31-36.023-034

Abstract

Algae biomass is considered as an alternative raw material for the production of biofuels. The search for new types of raw materials, including high-energy types of microalgae, remains relevant, since the share of motor fuels in the structure of the global fuel and energy balance remains consistently high (about 35%), and the price of oil is characterized by high volatility. The authors have considered the advantages of microalgae as sources of raw materials for fuel production. Biochemical and thermochemical conversion are proposed as technologies for their processing. This paper presents the results of the study of the pyrolysis of the biomass of clonal culture of blue-green microalgae / cyanobacterium Arthrospira platensis rsemsu 1/02-P from the collection of the Research Laboratory of Renewable Energy Sources of the Lomonosov Moscow State University. An experiment to study the process of pyrolysis of microalgae biomass was carried out at the experimental facility of the Institute of High Temperatures RAS in pure nitrogen grade 6.0 to create an oxygen-free environment with a linear heating rate of 10 ºС / min from room temperature to 1000 ºС. The whole process of pyrolysis proceeded in the field of endothermy. The specific amounts of solid residue, pyrolysis liquid and gaseous products were experimentally determined. As a result of the pyrolysis of microalgae biomass weighing 15 g, the following products were obtained: 1) coal has the mass of the solid residue is 2.68 g, or 17.7% of the initial mass of the microalgae (while 9.3% of the initial mass of the microalgae remained in the reactor); 2) pyrolysis liquid – weight 3.3 g, or 21.9% of the initial weight; 3) non-condensable pyrolysis gases – weight 1.15 l. The specific volumetric gas yield (the amount of gas released from 1 kg of the starting material) was 0.076 Nm3 / kg.
The analysis of the composition and specific volume yield of non-condensable pyrolysis gases formed in the process of pyrolysis, depending on temperature. It is shown that with increasing temperature, the proportion of highcalorie components of the gas mixture (hydrogen, methane and carbon monoxide) increases. The calorific value of the mixture of these gases has been estimated.

About the Authors

N. I. Chernova
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Nadezhda Chernova - Ph.D. in Biology, Associate Professor, Senior Researcher at Renewable Energy Sources Laboratory

1 Leninskie Gori, Moscow, 119991



S. V. Kiseleva
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Sofia Kiseleva - Ph.D. in Physics and Mathematics, Senior Researcher at the Renewable Energy Sources Laboratory

1 Leninskie Gori, Moscow, 119991



O. M. Larina
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Olga Larina - Ph.D. in Engineering, Scientific Worker of Distributed Generation Laboratory

13/2 Izhorskaya St., Moscow, 125412, tel.: +7(495) 485-93-90



G. A. Sytchev
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

George Sytchev - Scientific Worker of Distributed Generation Laboratory

13/2 Izhorskaya St., Moscow, 125412, tel.: +7(495) 485-93-90



References

1. Alekseev A.A., Kiseleva S.V., Chernova N.I. The growth of CO2 concentration in the atmosphere is a common good? (Rost koncentracii CO2 v atmosfere – vseobshchee blago?). Nature, 1999;(9):3–13(in Russ.).

2. Chernova N.I., Kiseleva S.V., Popel’ O.S.Efficiency of the biodiesel production from microalgae. Thermal Engineering, 2014;61(6):399–405.

3. Yujie Su , Kaihui Song, Peidong Zhang, Yuqing Su, Jing Cheng, Xiao Chen. Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 2017;74:402–411.

4. Chernova N.I., Kiseleva S.V., Korobkova T.P., Zaytsev S.I. Microalgae as а feedstock for biofuel production (Mikrovodorosli v kachestve syr'ya dlya polucheniya biotopliva). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2008;(9):68–74 (in Russ.).

5. Chernova N. I., Korobkova T.P., Kiseleva S. V. Use of biomass for producing liquid fuel: Current state and innovation. Thermal Engineering, 2010;57(11):937–945.

6. Chernova N.I., Kiseleva S.V., Zaytsev S.I. Thirdgeneration biofuel: the effects of stressors on the accumulation of neutral lipids in blue-green algae (cyanobacteria) (Problemy polucheniya biotopliva tret'ego pokoleniya: vozdejstvie stressorov na nakoplenie nejtral'nyh lipidov v sine-zelenyh vodoroslyah (cianobakteriyah)). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014;(12):70–83 (in Russ.).

7. Vlaskin M.S., Chernova N.I., Kiseleva S.V., Popel’ O.S., Zhuk A.Z. Hydrothermal liquefaction of microalgae to produce biofuels: state of the art and future prospects. Thermal Engineering, 2017;64(9):627–636.

8. Elliott D.C. Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels. Algal Research, 2016;13:255–263.

9. Chernova N.I., Kiseleva S.V., Vlaskin M.S. Biofuel production from microalgae by means of hydrothermal liquefaction: advantages and issues of the promising method. International Journal of Energy for a Clean Environment, 2017;18(2):132–145.

10. Vlaskin M.S., Kostyukevich Y.I., Vladimirov G.N. et al. Chemical composition of bio-oil produced by hydrothermal liquefaction of microalgae with different lipid content. IOP Conf. Series: Earth and Environmental Science, 2018;159(1):012004(1)–012004(6).

11. Vlaskin M.S., Grigorenko A.V., Chernova N.I., Kiseleva S.V. Hydrothermal liquefaction of microalgae after different pre-treatments. Energy Exploration and Exploitation, 2018( May):0(0) 1–0(0) 10.

12. Chernova N.I., Kiseleva S.V., Kalinina O.Yu. Biodiesel from microalgae: methods induction of lipids and screening promising strains (Biodizel' iz mikrovodorosley: metody induktsii lipidov i skrininga perspektivnykh shtammov). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(21):44–54 (in Russ.).

13. Chernova N.I., Kiseleva S.V. Microalgae biofuels: Induction of lipid synthesis for biodiesel production and biomass residues into hydrogen conversion. International Journal of Hydrogen Energy, 2017;42(5):2861–2867.

14. Patent 2322489 C1 Russian Federation, IPC6 C12N 1/12, C12R 1/89 Strain Arthrospira platensis (Nordst.) Geitl. 1/02-T / 03-5 – producer of protein biomass (Shtamm Arthrospira platensis (Nordst.) Geitl. 1/02-T/03-5 - producent belkovoj biomassy)/ Korobkova T.P., Chernova N.I., Kiseleva S.V., Zaitsev S.I.; applicants and patent owners Korobkova TP, Chernova NI, Kiseleva SV, Zaitsev SI - No. 2006122671/13; claimed. 27.06.06; publ. 2008/04/20, Bul. no. 11. – 7 with: 3 ill., 3 tab. (in Russ.).

15. Zarrouk C. Contribution a l'etude d’ une cyanophycee. Influence de diverse facteursphysiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardner) Geitler: University of Paris, France; 1966.

16. Dawson R.M.C., Elliott D.C., Elliott W.H., Jones K.M. Data for Biochemical Research (Third Edition). Oxford: Oxford Science Publications, 1986.

17. Folch J., Lees M., Stanley G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 1957;226(1):497–509.

18. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956;28(3):350–356.

19. Vasilevici S.V., Dmitriev G.M., Cojurin V.N., Maliko M.V. Research of thermochemical conversion of biomass to produce various types of fuels (Issledovanie termohimicheskoj konversii biomassy dlya polucheniya razlichnyh vidov topliv). Proceedings International conference “Energy of Moldova – 2012. Regional aspects of development”, 2012; pp. 324–330 (in Russ.).

20. Kosov V.V., Kosov V.F., Maikov I.L., Sinelshchikov V.A., Zaichenko V.M. High-calorific gas mixtures produced by pyrolysis of wood and peat. Proceedings of XVII European Biomass Conference and Exhibition 2009, Hamburg. 2009; pp. 1085–1088.

21. Miao X., Wu Q., Yang C. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis, 2004;71:855–863; http://dx.doi.org/10.1016/j.jaap.2003.11.004.

22. Rational use of gas in power plants (Ratsional'noye ispol'zovaniye gaza v energeticheskikh ustanovkakh). Reference manual / Ed. Isserlina A.S. Leningrad: Nedra Publ., 1990; 424 p. (in Russ.).

23. Azizi K., Moraveji M.K., Najafabadi H.A. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 2018;82:3046–3059.

24. Gong X., Zhang B., Zhang Y., Huang Y., Xu M. Investigation on pyrolysis of low lipid microalgae Chlorella vulgaris and Dunaliella salina. Energy Fuels, 2014;28:95–103; http://dx.doi.org/10.1021/ef401500z.

25. Hu Z., Ma X., Li L. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas. Bioresour Technol., 2013;140:220–6;http://dx.doi.org/10.1016/j.biortech.2013.04.096


Review

For citations:


Chernova N.I., Kiseleva S.V., Larina O.M., Sytchev G.A. MANUFACTURING GASEOUS PRODUCTS BY PYROLYSIS MICROALGAE BIOMASS. Alternative Energy and Ecology (ISJAEE). 2018;(31-36):23-34. (In Russ.) https://doi.org/10.15518/isjaee.2018.31-36.023-034

Views: 1209


ISSN 1608-8298 (Print)