

DETECTION OF DYNAMIC PROCESSES FOR LASER THERMOSTRENGTHENING OF THE MATERIAL SURFACE IN A REAL-TIME SCALEUNDER ILLUMINATION FROM LASER PLUME IN THE TRANSMISSION CHANNEL OF OPTICAL IMAGES VIA OPTICAL FIBER HARNESS USING A LASER BRIGHTNESS AMPLIFIER
https://doi.org/10.15518/isjaee.2018.31-36.071-085
Abstract
The article deals with model/test experiments on laser thermal hardening with the registration of the dynamics of the material surface modification in real time using a laser projection microscope (monitor) in the geometry of “pump-probe”. Hardening of materials by laser radiation, as well as dimensional processing compared to traditional methods is much more environmentally friendly because it happens very quickly and almost without emissions of harmful substances. And the possibility of observing the surface at the time of the hardening process can improve the quality of processed products. With the help of a laser projection microscope, it is possible to detect the moment of appearance of the transition region arising from the interaction of laser radiation with matter, to monitor the dynamics of its expansion, to register the appearance of the thermal front, the melting front, oxide fronts which is relevant in the heat treatment processes. A large number of publications are devoted to such methods and their modifications which confirms the importance and effectiveness of diagnostic methods using laser projection microscope to study various dynamic processes in the interaction of laser radiation with matter. In this work, the modernization of laser projection microscope with inclusion in the probing channel of optical harness is carried out. The basic physical principles of the obtained system and the existing problems, as well as the prospects of their overcoming in various conditions of specific processes of laser thermal hardening, including the use of computer simulation to find the optimal optical circuits and modes, are revealed. Depth-of-field problems are discussed for the resulting image through an optical fiber/optical bundle when recording such dynamic processes and how to overcome them by choosing the appropriate optical scheme. The analysis is also carried out on the basis of computer modeling. These issues are important in the implementation of various thermal hardening regimes in experiments with single-and multi-beam radiation of a power laser affecting the object at the appropriate setting of the laser monitor in the probing channel.
About the Authors
S. M. ArakelyanRussian Federation
Sergei Arakelian - D.Sc. in Physics and Mathematics, Professor, Сhairman of Department of Physics and Applied Mathematics
87 Gorky Str., Vladimir, 600000, tel.: +7 (4922) 47 98 47
V. L. Evstigneev
Russian Federation
Vladimir Evstigneev - Head of the Department
95 Volokolamsk drive, Moscow, 125371, tel.: +7 (495) 491 17 11
M. A. Kazaryan
Russian Federation
Mishik Kazaryan - D.Sc. in Physics and Mathematics, Leading Researcher
53 Leninsky Av., Moscow, 119991, tel.: +7(499)132-64-32
M. N. Gerke
Russian Federation
Miron Gerke - Senior Researcher at the Department of Physics and Applied Mathematics
87 Gorky Str., Vladimir, 600000, tel.: +7 (4922) 47 98 47
A. F. Galkin
Russian Federation
Arkadii Galkin - Professor of the Department of General and Applied Physics
87 Gorky Str., Vladimir, 600000, tel.: +7 (4922) 47 98 47
S. V. Zhirnova
Russian Federation
Svetlana Zhirnova - Senior Lecturer at the Department of Physics and Applied Mathematics
87 Gorky Str., Vladimir, 600000, tel.: +7 (4922) 47 98 47
A. V. Osipov
Russian Federation
Anton Osipov - Leading Engineer at the Department of Physics and Applied Mathematics
87 Gorky Str., Vladimir, 600000, tel.: +7 (4922) 47 98 47
G. A. Evstyunin
Russian Federation
Grigorij Evstyunin - General Director
of 8, 4 Pesochnaya Str., Vladimir, 600023, tel.: +7 (4922) 45 90 52
E. L. Shamanskaya
Russian Federation
Elena Shamanskaya - Senior Lecturer of the Department of Physics and Applied Mathematics
87 Gorky Str., Vladimir, 600000, tel.: +7 (4922) 47 98 47
References
1. Rabinovitz P., Chimenti R. Super-radiant illuminator projector. JOSA, 1970;(60):1577–1778.
2. Zemskov K.I. Laser projective microscope (Lazernyi proektsionnyi mikroskop). Quantum Electronics, 1974;(1):14–15 (in Russ.).
3. Arakeljan S.M. Introduction to femtonanophotonics. Fundamental basics and laser methods of controlled acquisition and diagnostics of nanostructured materials (Vvedenie v femto-nanofotoniku. Fundamental'nye osnovy i lazernye metody upravljaemogo poluchenija i diagnostiki nanostrukturirovannyh materialov). Moscow: Logos Publ., 2015; 744 p. (in Russ.).
4. Abramov D.V., Arakeljan S.M., Galkin A.F., Klimovskij I.I., Kucherik A.O., Prokoshev V.G. Laser diagnostics of the evolution of the surface of carbon under the influence of high-power laser pulses (Lazernaya diagnostika evolyutcii poverhnosti ugleroda pod vozdeistviem moshhnyh lazernyh impul'sov). Pribory i tehnika eksperimenta, 2006;(2):1–7 (in Russ).
5. Abramov D.V., Arakeljan S.M., Klimovskij I.I., Kucherik A.O., Prokoshev V.G. Visualization and restoration of the relief of the region of laser action on the graphite surface (Vizualizacija i vosstanovlenie rel'efa oblasti lazernogo vozdejstvija na poverhnost' grafita), Izvestija RAN, ser.fiz., 2006;(3):423–426 (in Russ).
6. ZharenovaS.V., Shamanskaya E.L. Visualization of interaction of laser radiation with a surface of glassy carbon and pirographite by means of the laser monitor. Third Russian-French Laser Symposium. The thesis’s of the reports. St. Petersburg, September 22–27. – 2008.
7. Abramov D.V., Galkin A.F., Zharjonova S.V., Klimovskij I.I., Prokoshev V.G., Shamanskaja E.L. Visualization of the interaction of laser radiation with the surface of glass and pyrolytic carbon by means of a laser monitor (Vizualizacija s pomoshh'ju lazernogo monitora vzaimodejstvija lazernogo izluchenija s poverhnost'ju steklo- i pirougleroda). Izvestija Tomskogo politehnicheskogo universiteta, 2008;(312)2. Matematika i mehanika. Fizika:97–101 (in Russ).
8. Zharenova S.V., Shamanskaja E.L. Visualization of the interaction of laser radiation with the surface of carbon-containing materials (Vizualizacija vzaimodejstvija lazernogo izluchenija s poverhnost'ju uglerodosoderzhashhih materialov). Uspehi sovremennogo estvestvoznanija, 2008;(8):50 (in Russ).
9. Abramov D.V., Arakelian S.M., Galkin A.F. Melting of carbon heated by concentrated laser radiation in air at atmospheric pressure and at a temperature not exceeding 4000 K (Plavlenie ugleroda, nagrevaemogo skontsentrirovannym lazernym izlucheniem v vozdukhe pri atmosfernom davlenii i temperature, ne prevyshaiushchei 4000 K). Pis'ma v ZhETF, 2006;(84): 315–319 (in Russ).
10. Prokoshev V.G., Galkin A.F., Klimovskii I.I., Danilov S.Iu., Abramov D.V., Arakelian S.M. Nonstationary laser thermochemical processes on the surface of metals and their visualization using a laser brightness amplifier (Nestatsionarnye lazernye termokhimicheskie protsessy na poverkhnosti metallov i ikh vizualizatsiia pri pomoshchi lazernogo usilitelia iarkosti). Kvantovaia elektronika, 1998;25(4):337–340 (in Russ).
11. Abramov D.V, Arakelian S.M., Galkin A.F. A Laser-Induced Process on the Surface of a Substance and Their Laser Diagnostics in Real Time. Laser Physics, 2005;15(9):1313–1318.
12. Bagaev S.N., Prokoshev V.G., Kucherik A.O., Abramov D.V., Arakelian S.M., Klimovskii I.I. Hydrodynamics of the melt of the metal surface under laser action; Monitoring of real-time mode change (Gidrodinamika rasplava poverkhnosti metalla pri lazernom vozdeistvii; nabliudenie smeny rezhimov v real'nom vremeni). Doklady Akademii nauk (DAN), 2004;395(2):83–186 (in Russ).
13. Abramov D.V., Arakelian S.M., Klimovskii I.I., Kucherik A.O., Prokoshev V.G. Reconstruction of the surface relief of the laser exposure region based on the processing of optical images obtained with a laser monitor (Rekonstruktsiia rel'efa poverkhnosti oblasti lazernogo vozdeistviia na osnove obrabotki opticheskikh izobrazhenii poluchennykh pri pomoshchi lazernogo monitora). Opticheskii zhurnal, 2007;74(8):73–77 (in Russ).
14. Prokoshev V.G., Kucherik A.O., Abramov D.V., Klimovskii I.I., Galkin A.F., Arakelian S.M. Diagnostic of laser modification of a graphite surface. Materials of international conference “Laser Matter Interaction-XI”, Pushkin, Russia, 2003; p. 26.
15. Prokoshev V.G., Abramov D.V., Klimovskii I.I., Galkin A.F. Diagnostic system on basis of laser brightness amplifier for monitoring and controlling the laser technological processes. Proceedings of SPIE, 2002;4644:168–175.
16. Boichenko A.M. [and others] Lasers on self-limited transitions of metal atoms (Lazery na samoogranichennykh perekhodakh atomov metallov), pod red. V.M. Batenina, M.: Fizmatlit, 2009; 544 p. (in Russ).
17. Batenin V.M., Boichenko A.M., Buchanov V.V. Lasers on self-limited transitions of metal atoms (Lazery na samoogranichennykh perekhodakh atomov metallov) / Ed. V.M. Batenina. Moscow: Fizmatlit Publ., 2011;(2):616 (in Russ).
18. Batenin V.M., Klimovskii I.I., Kalinin S.V., Galkin A.F., Danilov S.Yu., Prokoshev V.G., Abramov D.V., Arakelyan S.M. Patent 2162616 C1 Russian Federation, IPCG02B 25/00, 27/28 Strain Microscope G01B 9/04, G01N 1/06, G01N 13/10; G12B 21/00 - laser projection microscope (Shtamm Mikroskop G01B 9/04, G01N 1/06, G01N 13/10; G12B 21/00 - lazernyi proektsionnyi mikroskop) / 2001 (in Russ).
19. Prokoshev V.G., Klimovskii I.I., Abramov D.V., Taranenko M.A., Arakelyan S.M. Patent 98111965A Russian Federation, IPCG02B21/00 Strain Microscope G01N 1/06, G01N 13/10; G12B 21/00 - microscope with a brightness amplifier (Shtamm Mikroskop G01N 1/06, G01N 13/10; G12B 21/00 - mikroskop s usilitelem yarkosti) / 2000 (in Russ).
20. Prokoshev V.G., Klimovskii I.I., Abramov D.V., Arakelyan S.M., Galkin A.F., Grigor'ev A.V. Patent 2144204 C1 Russian Federation, IPC G02B21/00 (2006.01) Strain Microscope G01B 9/04, G01N 1/06, G01N 13/10; G12B 21/00 - laser projection microscope (Shtamm Mikroskop G01B 9/04, G01N 1/06, G01N 13/10; G12B 21/00 - lazernyi proektsionnyi mikroskop) / 2000 (in Russ).
21. Zemskov K.I., Kazaryan M.A., Petrash G.G. In the collection Optical systems with amplifiers of brightness (V sb. Opticheskie sistemy s usilitelyami yarkosti), 1991;206(3):62 (in Russ).
22. Zemskov K.I., Kazaryan M.A., Matveev V.M., Petrash G.G. In the collection Optical systems with luminance amplifiers (Opticheskie sistemy s usilitelyami yarkosti), 1991;206:63–100 (in Russ).
23. Kuznetsova T.I., Kuznetsov D.Yu. In the collection Optical systems with amplifiers of brightness (V sb. Opticheskie sistemy s usilitelyami yarkosti) M., Nauka, 1991;206:101–115) (in Russ).
24. Vasil'ev Yu.P., Zemskov K.I., Ivanov A.V., Kazaryan M.A., Petrash G.G., Chvykov V.V. In the collection Optical systems with amplifiers of brightness (V sb. Opticheskie sistemy s usilitelyami yarkosti), 1991;206:136–148 (in Russ).
25. Aleksandrov V.O., Budanov V.V.; Vasil'tsov V.V., Galushkin M.G., Golubev V.S., Egorov E.N., Zelenov E.V., Panchenko V.Ya., Semenov A.N., Chashkin E.V. New technological waveguide CO2 lasers with a willy-watt power level with high radiation quality [E-resource] (Novye tekhnologicheskie volnovodnye CO2-lazery killovattnogo urovnya moshchnosti s vysokim kachestvom izlucheniya). Scientific and technical “Optical Journal”, 2014:4(81). Available on: http://www.technolaser.ru/russian/album.html (03.14.2018) (in Russ).
26. Golubev V.S. Analysis of models of the dynamics of deep penetration of materials by laser radiation (Analiz modelei dinamiki glubokogo proplavleniya materialov lazernym izlucheniem). Preprint IPLIT RAN Shatura, 1999;(83):161 (in Russ).
27. Rinkevichyus B.S. Laser diagnostics of flows (Lazernaya diagnostika potokov). Moscow: Izdatel'stvo MEI Publ., 1990; 288 p. (in Russ).
28. Arakelyan S.M., Galkin A.F., Zhirnova S.V., Osipov A.V. Determination of brightness temperature of melting of glassy carbon (Opredelenie yarkostnoi temperatury plavleniya steklougleroda). Journal “Dynamics of complex systems”, 2015;9(1):48–50 (in Russ).
29. Wire harnesses for image transmission of the Lytkarinsky optical glass plant (Zhguty dlya peredachi izobrazheniya Lytkarinskogo zavoda opticheskogo stekla) [E-resource]. Available on: http://lzos.ru/content/view/23/43/ (03.14.2018).
30. Evtushenko G.S., Kazaryan M.A., Torgaev S.N., Trigub M.V., Shiyanov D.V. High-speed luminance amplifiers on induced transitions in metal vapors (Ckorostnye usiliteli yarkosti na indutsirovannykh perekhodakh v parakh metallov). Tomsk: STT Publ., 2016; 245 p. (in Russ).
Review
For citations:
Arakelyan S.M., Evstigneev V.L., Kazaryan M.A., Gerke M.N., Galkin A.F., Zhirnova S.V., Osipov A.V., Evstyunin G.A., Shamanskaya E.L. DETECTION OF DYNAMIC PROCESSES FOR LASER THERMOSTRENGTHENING OF THE MATERIAL SURFACE IN A REAL-TIME SCALEUNDER ILLUMINATION FROM LASER PLUME IN THE TRANSMISSION CHANNEL OF OPTICAL IMAGES VIA OPTICAL FIBER HARNESS USING A LASER BRIGHTNESS AMPLIFIER. Alternative Energy and Ecology (ISJAEE). 2018;(31-36):71-85. (In Russ.) https://doi.org/10.15518/isjaee.2018.31-36.071-085