Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ABOUT HEAT CAPACITY OF TITANIUM CARBIDE TiCx

https://doi.org/10.15518/isjaee.2019.01-03.056-066

Abstract

This work relates to the field of thermophysical parameters of refractory interstitial alloys. The isochoric heat capacity of cubic titanium carbide TiCx has been calculated within the Debye approximation in the carbon concentration  range x = 0.70–0.97 at room temperature (300 K) and at liquid nitrogen temperature (80 K) through the Debye temperature established on the basis of neutron diffraction analysis data. It has been found out that at room temperature with decrease of carbon concentration the heat capacity significantly increases from 29.40 J/mol·K to 34.20 J/mol·K, and at T = 80 K – from 3.08 J/mol·K to 8.20 J/mol·K. The work analyzes the literature data and gives the results of the evaluation of the high-temperature dependence of the heat capacity СV of the cubic titanium carbide TiC0.97 based on the data of neutron structural analysis. It has been proposed to amend in the Neumann–Kopp formula to describe the high-temperature dependence of the titanium carbide heat capacity. After the amendment, the Neumann–Kopp formula describes the results of well-known experiments on the high-temperature dependence of the heat capacity of the titanium carbide TiCx. The proposed formula takes into account the degree of thermal excitation (a quantized number) that increases in steps with increasing temperature.

The results allow us to predict the thermodynamic characteristics of titanium carbide in the temperature range of 300–3000 K and can be useful for materials scientists.

About the Authors

I. Khidirov
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

D.Sc. in Physics and Mathematics, Professor, head of the laboratory of the Structural Transformations in Solids States

Tashkent, 100214, Uzbekistan
tel.: (998-71) 289 31 18



V. V. Getmanskiy
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

Senior Researcher

Tashkent, 100214, Uzbekistan
tel.: (998-71) 289 31 18



A. S. Parpiev
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

Junior Researcher

Tashkent, 100214, Uzbekistan
tel.: (998-71) 289 31 18



Sh. A. Makhmudov
Institute of Nuclear Physics, Uzbekistan Academy of Sciences
Uzbekistan

Senior Researcher

Tashkent, 100214, Uzbekistan
tel.: (998-71) 289 31 18



References

1. [1] Zhevtun I.G., Gordienko P.S., Yarusova S.B. Formation of wear-resistant composite coatings on titanium alloys during electric arc treatment in aqueous electrolytes (Formirovanie iznosostoikikh kompozitnykh pokrytii na titanovykh splavakh pri elektrodugovoi obrabotke v vodnykh elektrolitakh). Moscow: RIOR INFRA-M Publ., 2018; 155 p. (in Russ.).

2. [2] Bairikov I.M., Bayrikov I.M., Amosov A.P., Tyumina O.V., Volchkov S.E., Latukhin E.I., Scherbovskikh A.E., Smetanin K.S. Experimental evaluation of the biocompatibility of a new SHSmaterial based on titanium carbide with through porosity on cultures of mesenchymal stem cells bone marrow of human (Eksperimental'naya otsenka biosovmestimosti novogo SHS-materiala na osnove karbida titana so skvoznoi poristost'yu na kul'turakh mezenkhimal'nykh stvolovykh kletok kostnogo mozga cheloveka). Voprosy chelyustno-litsevoi plasticheskoi khirurgii, implantologii i klinicheskoi stomatologii, 2011;1–2:23–27 (in Russ.).

3. [3] Yansheng G., Rong Tu, Takashi G. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD. Materials Research Bulletin, 2013;48:2766–2770 (in Eng.).

4. [4] Iverenova V.I., Revkevich G.P. Theory of X-ray scattering (Teoriya rasseyaniya rentgenovskikh luchei). Moscow: MGU Publ., 1972; 246 p. (in Russ.).

5. [5] Nozik Yu.Z., Ozerov R.P., Khennig K.M. Neutrons and solid. Structural neutron diffraction. V. 1 (Neitrony i tverdoe telo: Strukturnaya neitronografiya T. 1). Moskow: Atomizdat Publ., 1979; 344 p. (in Russ.).

6. [6] Toth L. Carbides and nitrides of transition metals (Karbidy i nitridy perekhodnykh metallov). Moscow: Mir Publ., 1974; 296 p. (in Russ.).

7. [7] Tcipenyuk, Yu.M. Zero point energy and zero point oscillations: how they are detected experi-mentally. Physics-Uspekh, 2012;55(8):855–867 (in Eng.).

8. [8] Khidirov I., Parpiev A.S. Separate Determination of the Amplitude of Thermal Vibrations and Static Atomic Displacements in Titanium Carbide by Neutron Diffraction (Razdel'noe opredelenie dinamicheskikh i staticheskikh srednekvadratichnykh smeshchenii atomov karbida titana metodom difraktsii neitronov). Kristallografiya, 2011;56(3):504–508 (in Russ.).

9. [9] Andrievskii A.R., Spivak I.I. Strength of refractory compounds and materials based on them (Prochnost' tugoplavkikh soedinenii i materialov na ikh osnove). Chelyabinsk: Metallurgiya Publ., 1989; 368 p. (in Russ.).

10. [10] Andrievskii R.A., Lanin A.G., Rymashevskii A.G. Strength of refractory compounds (Prochnost' tugoplavkikh soedinenii). Moscow: Metallurgiya Publ., 1974; 232 p. (in Russ.).

11. [11] Frantsevich I.N., Zhurakovskii E.A., Lyashchenko A.B. Elastic constants and features of the electronic structure of some classes of refractory compounds obtained by metal-ceramic (Uprugie postoyannye i osobennosti elektronnogo stroeniya nekotorykh klassov tugoplavkikh soedinenii, poluchaemykh metallokeramicheskim putem). Neorganicheskie materialy, 1967;3(1):8–16 (in Russ.).

12. [12] Nouska C.R.T. Thermal expansion and atomic vibration amplitudes for TiC, TiN, ZrC, ZrN and pure

13. tungsten. J. Phys. and Chem. Solis, 1964;25(4):359–366 (in Eng.).

14. [13] Kittel Ch. Introduction to solid state physics. 8 th edition. 8 th edition. New York: Wiley Publ., 2005: 704 p. (in Eng.).

15. [14] Shchul'tse G. Metal Physics (Metallofizika). Moscow: Mir Publ., 1971; 503 p. (in Russ.).

16. [15] Samsonov G.V. Refractory compounds (Tugoplavkie soedineniya). Moscow: Metallurgiya Publ., 1976: 580 p. (in Russ.).

17. [16] Storms E. Refractory carbides (Tugoplavkie karbidy). Moskow: Atomizdat Publ., 1970; 304 p. (in Russ.).

18. [17] Chirkin V.S. Thermophysical properties of materials of nuclear engineering (Teplofizicheskie svoistva materialov yadernoi tekhniki). Moscow: Atomizdat Publ., 1967; 474 p. (in Russ.).

19. [18] Prekul A.F., Kazantsev V.A., Schegolina N.I., Gulyaeva R. I., Edagawa K. High-temperature heat capacity of Al63Su25Fe12 quasicrystal (Vysokotemperaturnaya teploemkost' kvazikristalla Al63Cu25Fe12). Fizika tverdogo tela, 2008;50(11):1933–1935 (in Russ.).

20. [19] Denisov V.M., Denisova L.T., Irtyugo L.A., Patrin G.S., Volkov N.V., Chumilina L.G. Hightemperature heat capacity Y2,9 Ho0,1Al5O12 (Vysokotemperaturnaya teploemkost' Y2.9 Ho0.1Al5O12). Fizika tverdogo tela, 2013;55(4):636–638 (in Russ.).

21. [20] Denisov V.M., Denisova L.T., Chumilina L.G., Kirik S.D., Belousova N.V. High-temperature heat capacity Du2SuO5 (Vysokotemperaturnaya teploemkost' Dy2Cu2O5). Fizika tverdogo tela, 2013;55(9):1714–1716 (in Russ.).

22. [21] Denisova L.T., Denisov V.M., Gudim I.A., Temerov V.L., Volkov N.V., Patrin G.S., Chumilina L.G. High-temperature heat capacity of TbFe3(BO3)4 (Vysokotemperaturnaya teploemkost' TbFe3(BO3)4). Fizika tverdogo tela, 2014;56(5):892–894 (in Russ.).

23. [22] Denisova L.G., Chumilina L.G., Denisov V.M., Kirik S.D., Belousova N.V. The study of heat capacity Lu2Su2O5 in area 366-992 K (Issledovanie teploemkosti Lu2Cu2O5 v oblasti 366-992 K). Fizika tverdogo tela, 2014;56(3):620–622 (in Russ.).

24. [23] Kravets S.L., Osipov Y.S. Great Russian Encyclopedia (Bol'shaya Rossiiskaya Entsiklopediya). Mocow: BRE Publ., 2007, vol. 8; 767 p. (in Russ.).

25. [24] Epifanov G.M. Solid state physics (Fizika tverdogo tela). 4-edit. St. Petersburg: Lan' Publ., 2011; 288 p. (in Russ.).

26. [25] Gurtov V.A. Solid state physics for engineers (Fizika tverdogo tela dlya inzhenerov). Moscow: Tekhnosfera Publ., 2012; 560 p. (in Russ.)

27. [26] Burdiyan I.I., Batalin V.A. Teploprovodnost' i teploemkost' stekol sostava (As2S3)x(As2Se3)1-x / I. I. Burdiyan. Neorganicheskie materialy, 1995;31(1):127–128 (in Russ.).


Review

For citations:


Khidirov I., Getmanskiy V.V., Parpiev A.S., Makhmudov Sh.A. ABOUT HEAT CAPACITY OF TITANIUM CARBIDE TiCx. Alternative Energy and Ecology (ISJAEE). 2019;(01-03):56-66. (In Russ.) https://doi.org/10.15518/isjaee.2019.01-03.056-066

Views: 1041


ISSN 1608-8298 (Print)