Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Multi-Agent Direct Current Systems Using Renewable Energy Sources and Hydrogen Fuel Cells

https://doi.org/10.15518/isjaee.2019.04-06.065-082

Abstract

Shortcomings of electric power networks compared with DC networks in terms of stability, controllability, reliability and redundancy are noted. The article reveals the necessity of transition from digitalization in the form of automated process control systems to smart grids, and subsequently to multi-agent DC networks with a high degree of redundancy. In case of damage of one of the elements, these networks allow us to save the power supply to consumers and automatically restore the operation of the damaged element due to proven algorithms for diagnosing and restoring the original mode.

Moreover, the article deals with application of distributed generation consisting of traditional and renewable energy sources, as well as accumulators and static converters. Characteristics of the above mentioned elements are given for simulating the modes in order to select the structure and control algorithms that provide an increased degree of reliability and invulnerability of power supply. Substitution schemes and analytical expressions of renewable energy sources and energy storage devices are proposed and described for mathematical modeling of regimes. The most promising solid oxide fuel cells (SOFC) are considered. The commercialization of small and distributed energy has been constrained by the high unit cost of SOFC so far; however, their advantages are high efficiency and minimum environmental emission of flue gases. Prospects of introducing SOFC in the energy production is not obvious, however, in micro- and small-scale power generation, their commercialization abroad is a growing pace, in spite of the above limitations. So for 10 years from 2007 to 2016, their sales around the world increased 13 times with sales up to 480 MW. Russia has a huge domestic market for the introduction of SOFC which is estimated of 114 GW by 2035 with needs up to 44 million of micro capacities, hundreds of thousands of low power (up to 200 kW) and tens of thousands of more power units (over 2 MW). This volume of the domestic market allows transferring domestic developments in the field of industrial development and commercialization in the near future.

About the Authors

R. N. Shulga
VEI - the Branch of the Federal State Unitary Enterprise RFNC-VNIITF
Russian Federation

Robert Shulga - Ph.D. in Engineering, Leading Researcher, VEI - the Branch of the Federal State Unitary Enterprise RFNC -VNIITF.

12 Krasnokazarmennaya Str., Moscow, 111250, tel.: +7(903) 248-20-56



I. V. Putilova
Centre for Science and Education “Ecology of Power Engineering”, National Research University “Moscow Power Engineering Institute”
Russian Federation

Irina Putilova - PhD. in Engineering, Associate Professor, Head of the CSE “Ecology of Power Engineering” of MPEI, Member of the Editorial board from Russia of the Electronic Journal “Coal Combustion and Gasification Products” (www.coalcgp-journal.org).

14 Krasnokazarmennaya Str., Moscow, 111250, tel./fax: +7(495)362 79 12



References

1. Rogalev N.D., Molodyuk V.V. Problems of developing the Russian electric power industry and ways to address them (Problemy razvitiya elektroenergetiki Rossii i puti ikh resheniya). XXVIII International Scientific and Technical Conference TRAVEK “Prospects for the development of electric power industry and high-voltage electrical equipment”, November 7-8, 2018, Moscow (in Russ.).

2. Makarov Yu.V. et al. Blackout prevention in the United States, Europe and Russia. Proceedings of the IEEE, 2005;93(11):1942-1955.

3. Besanger Y., Eremia M., Voropai N. Major grid blackouts: Analysis Classification, and Prevention. Handbook of Electrical Dynamics System: Modeling, Stability, and Control. New Jersey: Wiley - IEEE Press, 2013, p. 789-863.

4. Report of the Commission of RAO “UES of Russia” on the investigation of the accident in the UES of Russia occurred on May 25, 2005 (Otchet Komissii RAO “EES Rossii” po rassledovaniyu avarii v EES Rossii, proizoshedshei 25 maya 2005 goda). Moscow: 2005. Available on: http://www.yug.so-ups.ru/Page.aspx?IdP=657 (02.18.2019) (in Russ.).

5. Ivakin V.I., Sysoyeva N.G., Khudyakov V.V. Transmissions and DC-inserts and static thyristor compensators (Elektroperedachi i vstavki postoyannogo toka i staticheskie tiristornye kompensatory). Moscow: Energoatomizdat Publ., 1993, 336 p. (in Russ.).

6. Veziroglu T.N. Energy system based on thermonuclear synthesis of hydrogen (Energeticheskaya sistema na osnove termoyadernogo sinteza vodoroda). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2017;(16-18):16-29 (in Russ).

7. Bockris J.O'M., Veziroglu T.N., Smith D. Solar hydrogen energy: the power to save the earth. London: Macdonald Optima, 1991, 147 p.

8. Izmailov S.V., Shulga A.R., Shulga R.N. New approaches to the creation of energy-information distribution systems (Novyye podkhody k sozdaniyu energoinformatsionnykh raspredelitel'nykh sistem). Electrical Engineering, 2014;(2):39-43 (in Russ.).

9. Izmailov S.V., Shulga A.R., Shulga R.N. Implementation of cloud information technology for monitoring and control of distribution grids (Realizatsiya oblachnoy informatsionnoy tekhnologii dlya kontrolya, monitoringa i upravleniya raspredelitel'nymi energosistemami). Electrical Engineering, 2013;(12):52-57 (in Russ.).

10. Getmanova N.Yu., Mestergazin V.A., Shulga R.N. The appearance of a digital control system, regulation and protection of a perspective DC insert (Oblik tsifrovoy sistemy upravleniya, regulirovaniya i zashchity perspektivnoy vstavki postoyannogo toka). Scientific-practical conference “Experience and prospects for the use of SPP andPPT”, 2016 (in Russ.).

11. “Network 2030”, National View (Vision) for the Second Century of the Electric Power Industry, Washington, April 2-3, 2003; 31 p.

12. Shulga R.N. On the issue of the possibility of creating a hybrid energy distribution network with the accumulation of electricity (K voprosu o vozmozhnosti sozdaniya gibridnoy energoraspredelitel'noy seti GERS s nakopleniyem elektroenergii). New in the Russian electric power industry, 2015;(12):29-44 (in Russ.).

13. Shulga R.N., Druzhinin M.Yu. Analysis of controls for operating modes of cable and overhead lines of alternating current (Analiz sredstv upravleniya rezhimami raboty kabel'nykh i vozdushnykh liniy peremennogo toka). New in the Russian electric power industry, 2017;(5):37-55 (in Russ.).

14. Kamenev A.S., Korolev S.Yu., Sokotushchenko V.N. Neuro modeling as a tool for the intellectualization of energy information systems (Neyromodelirovaniye kak instrument intellektualizatsii energoinformatsionnykh system. Moscow: EC Energy Publ., 2012; 124 p. (in Russ.).

15. Shulga R.N. Autonomous power supply using heterogeneous generation (Avtonomnoye energosnabzheniye s ispol'zovaniyem raznorodnoy generatsii). Electro, 2015;(3):7-11 (in Russ.).

16. Solomin E.V. et al. Use of the wind-hydrogen complex of uninterrupted power supply in various climatic conditions (Ispol'zovaniye vetro-vodorodnogo kompleksa bespereboynogo energosnabzheniya v razlichnykh klimaticheskikh usloviyakh). International Journal for Alternative Energy and Ecology (ISJAEE), 2018;(13-15):30-54 (in Russ.).

17. Solomin E. et al. Wind-hydrogen standalone uninterrupted power supply for all-climate application. International Journal of Hydrogen Energy, 2019;44(7):3433-3449.

18. Court V.K. HVDC and FACTS Controllers: The use of static converters in energy systems / NP “NIIA”, 2009; 344 p.

19. Celik S., Ibrahimoglu B., Mat M.D., Kaplan Yu., Veziroglu T.N. Microlevel two-dimensional thermal analysis and stress analysis at the anode - electrolyte interface of a solid oxide fuel cell (Mikrourovnevyy dvumernyy termicheskiy analiz i analiz napryazheniy na granitse razdela anod - elektrolit tverdookisnogo toplivnogo elementa). International Journal for Alternative Energy and Ecology (ISJAEE), 2017;(22-24):110-120 (in Russ.).

20. Veziroglu A., Macario R. Countries to benefit most from early transition to hydrogen fueled transportation: merit factor analysis (Preimushchestva uskorennogo vvedeniya v ekspluatatsiyu transportnykh sredstv na vodorodnom toplive: Analiz otsenochnykh pokazateley). International Journal for Alternative Energy and Ecology (ISJAEE), 2014;(2):29-76 (in Russ.).

21. Bredikhin S.I. et al. Stationary power plants with fuel cells: materials, technologies, markets (Statsionarnyye energeticheskiye ustanovki s toplivnymi elementami: materialy, tekhnologii, rynki). Moscow: NTF “Energoprogress” of EEK Corporation, 2017; 392 p. (in Russ.).

22. Lisitsyn L.G., Mestergazin V.A., Shulga R.N. A comprehensive solution of automating perspective DC insert problem (Kompleksnoye resheniye problem avtomatizatsii perspektivnykh vstavok postoyannogo toka). Electro, 2017;(2):21-25 (in Russ.).

23. Shulga R.N. Characteristics of drives and static converters (Kharakteristiki nakopiteley i staticheskikh preobrazovateley). Energy Saving and Water Treatment, 2016;1(99):68-76 (in Russ.).

24. Shulga R.N. Distributed generation using renewable energy as part of multi-agent DC systems (Raspredelennaya generatsiya s ispol'zovaniyem VIE v sostave mul'tiagentnykh sistem postoyannogo toka). Energy Saving and Water Treatment, 2017;5(109):58-68 (in Russ.).

25. Putilov V.Ya. Shulga R.N. Some technical and environmental aspects of the use of electricity storage devices in the power industry (Nekotoryye tekhnicheskiye i ekologicheskiye aspekty primeneniya nakopiteley elektroenergii v energetike). Electro, 2016;(1):6-12 (in Russ.).

26. Shulga R.N. The appearance of an electricity storage device based on lithium-ion batteries of megawatt power class (Oblik nakopitelya elektroenergii na osnove litiy-ionnykh akkumulyatorov megavattnogo klassa moshchnosti). Electro, 2017;(6):37-44 (in Russ.).


Review

For citations:


Shulga R.N., Putilova I.V. Multi-Agent Direct Current Systems Using Renewable Energy Sources and Hydrogen Fuel Cells. Alternative Energy and Ecology (ISJAEE). 2019;(4-6):65-82. (In Russ.) https://doi.org/10.15518/isjaee.2019.04-06.065-082

Views: 1003


ISSN 1608-8298 (Print)