Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Обзор: производство биотоплива из биомассы растений и водорослей

https://doi.org/10.15518/isjaee.2019.07-09.012-031

Полный текст:

Аннотация

Биотопливо является многообещающей альтернативой исчерпаемым и экологически небезопасным ископаемым видам топлива. Водорослевая биомасса является привлекательным сырьем для производства биотоплива. Для выращивания водорослей не нужны пахотные земли как для сельскохозяйственных продовольственных культур для производства биотоплива, а также не требуются сложные методы обработки, необходимые для получения конечного продукта из биомассы, обогащенной лигноцеллюлозой. Многие микроводоросли являются миксотрофами, поэтому их можно использовать одновременно и как источник энергии, и как очиститель сточных вод. Одним из основных этапов производства водорослевого биотоплива является выращивание биомассы. Для этой цели используются фотобиореакторы и системы на открытом воздухе. Первые позволяют тщательно контролировать выращивание, последние дешевле и проще. Процессы обработки биомассы можно разделить на термохимические, химические, биохимические ,Ю', методы и прямое сжигание. Для производства биодизеля биомасса, обогащенная триглицеридами, подвергается переэтерификации. Для производства биоспиртов биомасса подвергается ферментации. Существуют три метода производства биоводорода в клетках микроводорослей: прямой биофотолиз, непрямой биофотолиз, ферментация.

Об авторах

Р. А. Волошин
Институт физиологии растений РАН
Россия

Роман Александрович Волошин - научный сотрудник, Лаборатория управляемого фотобиосинтеза.

h-индекс: 7

Д. 35, ул. Ботаническая, Москва 127276



М. В. Родионова
Институт физиологии растений РАН
Россия

Маргарита Викторовна Родионова - аспитрант, младший научный сотрудник, Лаборатория управляемого фотобиосинтеза.

Д. 35, ул. Ботаническая, Москва 127276



С. К. Жармухамедов
Институт фундаментальных биологических проблем РАН
Россия

Сергей Куштаевич Жармухамедов - Сведения об авторе: кандидат биологических наук, ведущий научный сотрудник Федерального исследовательского центра «Пущинский научный центр биологических исследований» РАН.

Д. 2, ул. Институтская, Пущино, Московская область 142290



Т. Н. Везироглу
Международная ассоциация по водородной энергетике
Соединённые Штаты Америки

Турхан Н. Везироглу - доктор наук (теплообмен), профессор, президент Международной ассоциации водородной энергетики, член 18 научных организаций.

Майами, Флорида


С. И. Аллахвердиев
Институт физиологии растений РАН; Институт фундаментальных биологических проблем РАН; Московский государственный университет им. М.В. Ломоносова
Россия

Сулейман Ифхан оглы Аллахвердиев - доктор физико-математических наук, заведующий Лабораторией управляемого фотобиосинтеза Института физиологии растений РАН; главный научный сотрудник ИФПБ РАН; профессор кафедры физиологии растений биологического факультета МГУ; преподаватель кафедры молекулярной и клеточной биологии Московского физико-технического института (Национального-исследовательского университета); заведующий лабораторией бионанотехнологии в институте молекулярной биологии и биотехнологии Азербайджана (Баку).

h-index 29.

Д. 35, ул. Ботаническая, Москва 127276; Д. 2, ул. Институтская, Пущино, Московская область 142290; д. 1/12, Ленинские горы, Москва 119991



Список литературы

1. Wurfel P. Physics of solar cells from principles to new concepts. WILEY-VCH; 2005. ISBN 3-527-40428-7.

2. Renewables 2015 global status report. REN21. Paris: REN21 Secretariat; 2015. ISBN 978-3-9815934-6-4.

3. Voloshin R.A., Kreslavski V.D., Zharmukhamedov S.K., Bedbenov V.S., Ramakrishna S., Allakhverdiev S.I. Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res J, 2015;6:227-35.

4. Allakhverdiev S.I., Ramakrishna S. A random walk to and through the photoelectrochemical cells based on photosynthetic systems. Biofuel Res J., 2015;6:222.

5. Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K., Hou H., Shen J.-R., Allakhverdiev S.I. Components of natural photosynthetic apparatus in solar cells. In: Najafpour MM, editor. Applied photosynthesis e new progress. Rijeka, Croatia: InTech d.o.o; 2016. p. 161-88.

6. Allakhverdiev S.I., Kreslavski V.D., Thavasi V., Zharmukhamedov S.K., Klimov V.V., Nagata T., et al. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem. Photobiol.Sci, 2009;8:148-56.

7. Allakhverdiev S.I., Thavasi V., Kreslavski V.D., Zharmukhamedov S.K., Klimov V.V., Ramakrishna S., et al. Photosynthetic hydrogen production. J. Photochem. Photobiol. CPhotochem. Rev., 2010;11:101-13.

8. Razzak S.A., Hossain M.M., Lucky R.A., Bassi A.S., de Lasa H. Integrated CO2 capture, waste water treatment and biofuel production by microalgae culturing-A review. Renew. Sustain. Energy Rev., 2013;27:622-53.

9. Surriya O., Syeda S.S., Waqar K., Gul Kazi A., Ozturk M. Bio-fuels: a blessing in disguise. In: Ozturk M., Ashraf M., Aksoy A., Ahmad M.S.A., editors. Phytoremediation for green energy. Springer; 2015. p. 11-30. http://dx.doi.org/10.1007/978-94-007-7887-0_2.

10. Nigam P.S., Singh A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci., 2011;37:52-68.

11. Dragone G., Fernandes B., Vicente A.A., Teixeira J.A. Third generation biofuels from microalgae. In: Mendez-Vilas A., editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex; 2010. p. 1355-66.

12. McKendry P. Energy production from biomass (Part 1): overview of biomass. Bioresour. Technol., 2002;83(1):37-46.

13. Alonso D.M., Bond J.Q., Dumesic J.A. Catalytic conversion of biomass to biofuels. GreenChem., 2010;12:1493-513. http://dx.doi.org/10.1039/c004654j.

14. Nada E.M. The manufacture of biodiesel from the used vegetable oil. 2011. A thesis submitted to the Faculty of Engineering at Kassel and Cairo Universities for the degree of Master of Science University of Kassel.

15. Demirbas A. Political, economic and environmental impacts of biofuels: a review. Appl. Energy, 2009;86:108-17.

16. Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 2008;49:2106-16.

17. Allakhverdiev S.I., Kreslavski V.D., Thavasi V., Zharmukhamedov S.K., Klimov V.V., Ramakrishna S., et al. Photosynthetic energy conversion: hydrogen photoproduction by natural and biomimetic systems. In: Mukhetjee A, editor. Biomimetics, learning from nature. Rijeka, Croatia: InTech d.o.o; 2010. p. 49-76.

18. Abdelaziz AEM, Leite GB, Hallenbeck PC. Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ Technol 2013;34:1807-36.

19. Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25:249-306.

20. Wang B., Li Y., Wu N., Lan C.Q. CO2 biomitigation using microalgae. Appl. Microbiol. Biotechnol., 2008;79:707-18.

21. Slade R., Bauen A. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy, 2013;53:29-38.

22. Bhatt N.C., Panwar A., Bisht T.S., Tamta S. Coupling of algal biofuel production with wastewater. Sci. World J, 2014:10. http://dx.doi.org/10.1155/2014/210504. Article ID 210504.

23. Pandey A., Lee D.-J., Chisti Y., Socol C.R. Biofuels from algae. Elsevier; 2014. ISBN: 978-0-44459558-4.

24. Carlsson A.S., van Beilen J.B., Moller R., Clayton D. In: Bowles D, editor. Micro- and macroalgae: utility for industrial applications, outputs from the EPOBIO project. Newbury (UK). University of York: CPL Press; 2007. p. 1-82.

25. Tran N.H., Bartlett J.R., Kannangara G.S.K., Milev A.S., Volk H., Wilson M.A. Catalytic upgrading of biorefinery oil from micro-algae. Fuel, 2010;189:265-74.

26. Razaghifard R. Algal biofuels. Photosynth. Res, 2013. http://dx.doi.org/10.1007/s11120-0113-9828-z.

27. Alam F., Date A., Rasjidin R., Mobin S., Moria H., Baqui A. Biofuel from algae e is it a viable alternative? Proced. Eng., 2012;49:221-7.

28. Abdulqader G., Barsanti L., Tredici M.R. Harvest of arthrospira platensis from lake Kossorom (Chad) and its household usage among the Kanembu. J. Appl. Phycol., 2000;12:493-8.

29. Borowitzka M.A. Culturing microalgae in outdoor ponds. In: Andersen R.A., editor. Algal culturing techniques. Burlington M.A.: Elsevier Academic Press; 2005. p. 205-18.

30. Carvalho A.P., Meireles L.A., Malcata F.X. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog, 2006;22:1490-506.

31. Brennan L., Owende P. Biofuels from microalgae e a review of technologies for production, processing, and extractions of biofuels and co-products. J. Renew. Sustain. Energy, 2010;14:557-77.

32. Chini Zittelli G., Rodolfi L., Biondi N., Tredici M.R. Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 2006;261:932-43.

33. Kirm I., Brandin J., Sanati M. Shift catalysts in biomass generated synthesis gas. Top. Catal., 2007;45:2-11. http://dx.doi.org/10.1007/s11244-007-0236-5.

34. Hu J., Yu F., Lu Y. Application of FischereTropsch synthesis in biomass to liquid conversion. Catalysts, 2012;2:303-26. http://dx.doi.org/10.3390/catal2020303.

35. Roy S., Das D. Liquid fuels production from algal biomass. In: Das D, editor. Algal biorefinery: an integrated approach. Capital Publishing Company; 2015. p. 277-96.

36. The global biofuels market: energy security, trade and development United Nations Conference on trade and development. 2013.

37. Shah Y.R., Sen D.J. Bioalcohol as green energy e a review. Int. J. Cur. Sci. Res., 2011;01:57-62.

38. Dias M.O.S., Ensinas A.V., Nebra S.A., Filho R.M., Rossell C.E.V., Maciel M.R.W. Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem. Eng. Res., 2009;87:1206-16.

39. Ensinas A.V., Nebra S.A., Lozano M.A., Serra L.M. Analysis of process steam demand reduction and electricity generation in sugar and ethanol production from sugarcane. Energy Convers. Manag., 2007;48:2978-87.

40. Buddadee B., Wirojanagud W., Watts D.J., Pitakaso R. The development of multi-objective optimization model for excess bagasse utilization: a case study for Thailand. Environ. Impact Assess’. Rev., 2008;28:380-91.

41. Harun R., Singh M., Forde G.M., Danquah M.K. Bioprocess engineering of microalgae to produce a variety of consumer products. J. Renew. Sustain. Energy, 2010;14:1037-47.

42. Hirano A., Ueda R., Hirayama S., Ogushi Y. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 1997;22:137-42.

43. Ueda R., Hirayama S., Sugata K. and Nakayama H. Process for the production of ethanol from microalgae. US Patent 1996; 5,578,472.

44. Chen P., Min M., Chen Y., Wang L., Li Y., Chen Q., et al. Review of the biological and engineering aspects of algae to biofuels approach. Int. J. Agri. Biol. Eng, 2009;2(4):1-24.

45. Ueno Y., Kurano N., Miyachi S. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J. Ferment.Bioeng., 1998;86:38-43.

46. Sarkar N., Ghosh S.K., Bannerjee S., Aikat K. Bioethanol production from agricultural wastes: an overview. Renew. Energy, 2012;37:19-27.

47. Kosaric N., Duvnjak Z., Farkas A., Sahm H., Bringer-Meyer Sindustrial chemistry. Weinheim: Wiley-VCH; 2011. http://dx.doi.org/10.1002/14356007.a09_587.pub2.

48. Sriranjan K., Pyne M.E., Chou C.P. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour. Technol., 2011;102:8589-604.

49. Takezawa N., Shimokawabe M., Hiramatsu H., Sugiura H., Asakawa T., Kobayashi H. Steam reforming of methanol over Cu/ZrO2. Role of ZrO2 support. React. Kinet. Catal. Lett., 1987;33:191-6.

50. Phillips V.D., Kinoshita C.M., Neill D.R., Takashi P.K. Thermochemical production of methanol from biomass in Hawaii. Appl. Energy, 1990;35:167-75.

51. McGinn P.J., Dickinson K.E., Bhatti S., Frigon J., Guiot S.R., O'Leary S.J. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth. Res., 2011;109:231-47.

52. Yeole S.D., Aglave B.A., Lokhande M.O. Algaeoleum-a third generation biofuel. Asian J. Bio. Sci., 2009;4:344-7.

53. Naik S.N., Goud V.V., Rout P.K., Dalai A.K. Production of first and second generation biofuels: a comprehensive review. Renew. Sust. Energy Rev., 2010;14:578-97.

54. Raja S.A., Robinson smart D.S., Lee C.L.R. Biodiesel production from jatropha oil and its characterization. Res. J. Chem. Sci., 2011;01:81-7.

55. Cadenas A., Cabezudo S. Biofuels as sustainable technologies: perspectives for less developed countries. Technol. Forecast. Soc., 1998;58:83-103.

56. Khan S.A., Rashmi, Hussain M.Z., Prasad S., Banerjee U.C. Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev., 2009;13:2361-72.

57. Gerpen V. Biodiesel processing and production. Fuel Process. Technol., 2005;86:1097-107.

58. Sheehan J., Camobreco V., Duffield J., Graboski M., Shapouri H. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. NREL; 1998.

59. Singh A., Nigam P.S., Murphy J.D. Renewable fuels from algae: an answer to debatable and based fuels. Bioresour. Technol., 2011;102:10-6.

60. Schenk P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C., et al. Second generation biofuels: high efficiency microalgae for biodiesel production. BioEnergy Res., 2008;01:20-43.

61. Scott S.A., Davey M.P., Dennis J.S., Horst I., Howe C.J., Lea-Smith D.J., et al. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol., 2010;21:277-86.

62. Xu H., Miao X., Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol., 2006;126:499-507.

63. Li Y., Horsman M., Wu N., Lan C.Q., Dubois-Calero N. Biofuels from microalgae. Biotechnol. Prog, 2008;24:815-20.

64. Ge Y., Liu J., Tian G. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour. Technol, 2011;102:130-4.

65. Suresh B., Yoneyama M., Schlag S. CEH Marketing Research Report Abstract: HYDROGEN. Chemical Industries Newsletter, SRI Consulting, Menlo Park, CA. 2007.

66. Kruse O., Rupprecht J., Mussgnug J.H., Dismukes G.C., Hankamer B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci, 2005;04:957-70.

67. Prince R.C., Kheshgi H.S. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit. Rev. Microbiol., 2005;31:19-31.

68. Ghirardi M.L., Dubini A., Yu J., Maness P.-C. Photobiological hydrogen-producing systems. Chem. Soc. Rev, 2009;38:52-61.

69. Seibert M. Applied photosynthesis for biofuels production. In: Smith K.C., editor. Photobiological sciences online. American Society for Photobiology; 2009.

70. Benemann J.R. Hydrogen production by microalgae. J. Appl. Phycol., 2000;12:291-300.

71. Seibert M., King P., Posewitz M.C., Melis A., Ghirardi M.L. In: Wall J., Harwood C., Demain A., editors. Photosynthetic water-splitting for hydrogen production. Washington DC: ASM Press; 2008. p. 273-91.

72. Tsygankov A., Kosourov S. Immobilization of photosynthetic microorganisms for efficient hydrogen production. In: Zannoni D., De Philippis R., editors. Microbial BioEnergy: hydrogen production. Dordrecht: Springer Netherlands; 2014. p. 321-47.

73. Ghirardi M.L., King P.W., Posewitz M.C., Maness P.C., Fedorov A., Kim K., et al. Approaches to developing biological H2-producing organisms and processes. Biochem. Soc. Trans., 2005;33:70-2.

74. Ghirardi M.L., Posewitz M.C., Maness P.C., Dubini A., Yu J., Seibert M. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu. Rev. Plant. Biol., 2007;58:71-91.

75. Allahverdiyeva Y., Aro E.M., Kosourov S.N. Recent developments on cyanobacteria and green algae for biohydrogen photoproduction and its importance in CO2 reduction. In: Gupta V.K., Tuohy M., Kubicek C.P., Saddler J., editors. Bioenergy research: advances and applications. Amsterdam: Elsevier; 2014. p. 367-87.

76. Melis A., Zhang L., Forestier M., Ghirardi M.L., Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol, 2000;122:127-36.

77. Greenbaum E. Photosynthetic hydrogen and oxygen production: kinetic studies. Science, 1982;196:879-80.

78. Greenbaum E., Blankinship S.L., Lee J.W., Ford R.M. Solar photobiochemistry: simultaneous photoproduction of hydrogen and oxygen in a confined bioreactor. J. Phys. Chem. B, 2001;105:3605-9.

79. Volgusheva A., Kukarskikh G., Krendeleva T., Rubin A., Mamedov F. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSCAdv., 2015;5:5633-7.

80. Leino H., Kosourov S.N., Saari L., Sivonen K., Tsygankov A.A., Aro E.-M., et al. Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int. J. Hydrogen Energy, 2012;37:151-61.

81. Jea-Hwa L., Dong-Geun L., Jae-Il P., Ji-Youn K. Biohydrogen production from a marine brown algae and its bacterial diversity. Korean J. Chem. Eng, 2010;27(1):187-92. http://dx.doi.org/10.1007/s11814-009-0300-x.

82. Benemann J.R. Hydrogen biotechnology: progress and prospects. Nat. Biotech., 1996;14:1101-3.

83. Gaffron H., Rubin J. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol, 1942;26:219-40.

84. Benemann J.R., Weare N.M. Hydrogen evolution by nitrogenfixing Anabaena cylindrica cultures. Science, 1974;184:174-5.

85. Winkler M., Kuhlgert S., Hippler M., Happe T. Characterization of the key step for light-driven hydrogen evolution in green algae. J. Biol. Chem., 2009;284:36620-7.

86. Gutekunst K., Chen X., Schreiber K., Kaspar U., Makam S., Appel J. The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitratelimiting conditions. J. Biol. Chem, 2014;289:1930-7.

87. Shima S., Pilak O., Vogt S., Schick M., Stagni M.S., Meyer-Klaucke W., et al. The crystal structure of [Fe].-hydrogenasereveals the geometry of the active site. Science, 2008;321(5888):572-5. http://dx.doi.org/10.1126/science.1158978.

88. Appel J., Schulz R. Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? Photochem. Photobiol., 1998;47:1-11.

89. Poudyal R.S., Tiwari I., Najafpour M.M., Los D.A., Carpentier R., Shen J.-R., et al. Current insights to enhance hydrogen production by photosynthetic organisms. In: Stolten D., Emonts B., editors. Hydrogen science and engineering: materials, processes, systems and technology. Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 461-87.

90. Miura Y., Akano T., Fukatsu K., Miyasaka H., Mizoguchi T., Yagi K., et al. Hydrogen production by photosynthetic microorganisms. Energy Convers. Manag., 1995;36:903-6.

91. Antal T.K., Lindblad P. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J. Appl. Microbiol., 2005;98:114-20.

92. Dauvillee D., Chochois V., Steup M., Haebel S., Eckermann N., Ritte G., et al. Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J., 2006;48:274-85.

93. Melis A., Melnicki M.R. Integrated biological hydrogen production. Int. J. Hydrogen Energy, 2006;31:1563-73.

94. Lee J.Z., Klaus D.M., Maness P.-C., Spear J.R. The effect of butyrate concentration on hydrogen production via photofermentation for use in a Martian habitat resource recovery process. Int. J. Hydrogen Energy, 2007;32:3301-7.

95. Skjanes K., Rebours C., Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit. Rev. Biotechnol., 2013;33:172-215.

96. Bothe H., Schmitz O., Yates M.G., Newton W.E. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol. Mol. Biol. Rev., 2010;74:529-51.

97. Compaore J., Stal L.J. Oxygen and the light-dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ. Microbiol., 2010;12:54-62.

98. Bandyopadhyay A., Stockel J., Min H., Sherman L. A., Pakrasi H.B. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat. Commun., 2010;1:139.

99. Antoni D., Zverlov V.V., Schwarz W.H. Biofuels from microbes. Appl. Microbiol. Biotechnol, 2007;77(1):23-35.

100. Markov S.A., Weaver P.F. Bioreactors for H2 production by purple nonsulfur bacteria. Appl. Biochem. Biotecnol., 2008;145:79-86.

101. Ghirardi M.L., Mohanty P. Oxygenic hydrogen photoproduction e current status of the technology. Curr. Sci. India, 2010;98:499-507.

102. Vignais P.M., Colbeau A., Willison J.C., Jouanneau Y. Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv. Microbiol. Physiol., 1985;26:155-234.

103. Kars G., Gunduz U, Yucel M, Turker L, Eroglu I. Hydrogen production and transcriptional analysis of nifD, nifK and hupS genes in Rhodobacter sphaeroides O.U.001 grown in media with different concentrations of molybdenum and iron. Int. J. Hydrogen Energy, 2006;31:1536-44.

104. Uyar B., Schumacher M., Gebicki J., Modigell M. Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent. Bioprocess. Biosyst. Eng., 2009;32:603-6.

105. Ozgur E., Mars A.E., Peksel B., Louwerse A., Yucel M., Gunduz U., et al. Biohydrogen production from beet molasses bysequential dark and photofermentation. Int. J. Hydrogen Energy, 2010;35:511-7.

106. Liu B.-F., Ren N.-Q., Ding J., Xie G.-J., Guo W.-Q. The effect of Ni2+, Fe2+ and Mg2+ concentration on photo-hydrogen production by Rhodopseudomonas faecalis RLD-53. Int. J. Hydrogen Energy, 2009;34:721-6.

107. Martmez-Perez N., Cherryman S.J., Premier G.C., Dinsdale R.M., Hawkes D.L., Hawkes F.R., et al. The potential for hydrogenenriched biogas production from crop: scenarios in the UK. Biomass Bioenergy, 2007;31:95-104.

108. Markov S.A., Waldron B. Hollow-fiber bioreactor for glycerin conversion into H2 by bacterium Enterobacter aerogenes. Int. Sci. J. Altern. Energy Ecol. (ISJAEE), 2010;88(8):130-4.

109. Pinto F.A.L., Troshima O., Lindbald P. A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrogen Energy, 2002;27:1209-15.

110. Chong M.L., Sabaratnam V., Shirai Y., Hassan M.A. Biohydrogen production from biomass and industrial wastes by dark fermentation. Int. J. Hydrogen Energy, 2009;34:3277-87.

111. Guwy A.J., Dinsdale R.M., Kim J.R., Massanet-Nicolau J., Premier G. Fermentative biohydrogen production systems integration. Bioresour. Technol., 2011;102:8534-42.

112. Nath K., Das D. Modeling and optimization of fermentative hydrogen production. Bioresour. Technol., 2011;102:8569-81.

113. Zhanga Y., Yanga H., Guo L. Enhancing photo-fermentative hydrogen production performance of Rhodobacter capsulatus by disrupting methylmalonate-semialdehyde dehydrogenase gene. Int. J. Hydrogen Energy, 2016;41(1):190-7. http://dx.doi.org/10.1016/jijhydene.2015.09.122.

114. Zhou P., Wang Y., Gao R., Tong J., Yang Z. Transferring [NiFe. hydrogenase gene from Rhodopeseudomonas palustris into E. coli BL21(DE3) for improving hydrogen production. Int. J. Hydrogen Energy, 2015;40(12):4329-36. http://dx.doi.org/10.1016/j.ijhydene.2015.01.171.

115. Liu T., Zhu L., Wei W., Zhou Z. Function of glucose catabolic pathways in hydrogen production from glucose in Rhodobacter sphaeroides 6016. Int. J. Hydrogen Energy, 2015;39(9):4215-21. http://dx.doi.org/10.1016/j.ijhydene.2013.12.188.

116. Eroglu E., Melis A. Microalgal hydrogen production research. Int. J. Hydrogen Energy, 2016;41:12772-98.

117. Scoma A., Krawietz D., Faraloni C., Giannelli L., Happe T., Torzillo G. Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J. Biotechnol., 2012;157:613-9.

118. Gronenberg L.S., Marcheschi R.J., Liao J.C. Next generation biofuel engineering in prokaryotes. Curr. Opin. Chem. Biol., 2013;17:462-71.

119. Hasunuma T., Okazaki F., Okai N., Hara K.Y., Ishii J., Kondo A. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour. Technol., 2013;135:513-22.

120. Atsumi S., Higashide W., Liao J.C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol., 2009;27:1177-80.

121. Lindberg P., Park S., Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng., 2010;12:70-9.

122. Carere C.R., Rydzak T., Verbeke T.J., Cicek N., Levin D.B., Sparling R. Linking genome content to biofuel production yields: a meta-analysis a major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol., 2012;12:295.

123. Cha M., Chung D., Elkins J.G., Guss A.M., Westpheling J. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol. Biofuels, 2013;6:85.

124. Melis A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci., 2009;177:272-80.

125. Verbeke T.J., Zhang X., Henrissat B., Spicer V., Rydzak T., Krokhin O.V., et al. Genetic evaluation of Thermoanaerobactor spp. for the construction of designer co-cultures to improve ignocellulosic biofuel production. PLoS One 2013;8(3): 59362.http://dx.doi.org/10.1371/journal.pone.0059362.

126. Ilmen M., den Hann R., Brevnova E., Mcbride J., Wiswall E., Froehlich A., Koivula A., et al. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol. Biofuels, 2011;4:30.

127. Tai M., Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng., 2013;15:1-9.

128. Buijs N.A., Siewers V., Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol., 2013;17:480-8.


Для цитирования:


Волошин Р.А., Родионова М.В., Жармухамедов С.К., Везироглу Т.Н., Аллахвердиев С.И. Обзор: производство биотоплива из биомассы растений и водорослей. Альтернативная энергетика и экология (ISJAEE). 2019;(7-9):12-31. https://doi.org/10.15518/isjaee.2019.07-09.012-031

For citation:


Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K., Veziroglu T.N., Allakhverdiev S.I. Review: Biofuel Production from Plant and Algal Biomass. Alternative Energy and Ecology (ISJAEE). 2019;(7-9):12-31. https://doi.org/10.15518/isjaee.2019.07-09.012-031

Просмотров: 254


ISSN 1608-8298 (Print)