

Hydrogen Production by Low-Temperature Oxidative Water-Steam Reforming of Ethanol on Ni/ZnO Catalyst
https://doi.org/10.15518/isjaee.2019.07-09.062-072
Abstract
The paper investigates the process of oxidative low-temperature water-steam reforming of ethanol in the flow tube of a quartz reactor at atmospheric pressure over a temperature range 300-450 °C in order to obtain hydrogen with a minimum content of carbon monoxide on the previously developed Ni/ZnO catalyst (20 wt.% nickel). The catalyst was prepared by impregnating industrial zinc oxide powder with nickel nitrate followed by calcination and reduction of nickel oxide. Water-ethanol mixtures with the ethanol-water molar ratios from 1: 2 to 1:13 were used. The flow of the liquid mixture was 0.45-1.55 g / h. Air with the mixture was supplied to the reaction zone so that the oxy-gen/ethanol molar ratio varied in the range of 0.5-1.2. A gas phase analysis was carried out on a gas chromatograph “Tsvet-500”. A catarometer was used as a detector.
The research has shown a rather high efficiency of the Ni/ZnO catalyst in the hydrogen production in the process of oxidizing water-steam reforming of ethanol at relatively low temperatures. Hydrogen, methane and carbon dioxide are the main products of ethanol reforming. The conversion of ethanol takes place already at 300 °C and is almost completely at 450 °C (99%). The hydrogen content in the reforming products in all the studied cases is over the range of 45-60 vol% and constitutes the yield of 1.6 mole of hydrogen per 1 mole of ethanol at a temperature of 450 °C. At the same time, a higher content of carbon dioxide reaching 45 vol% and a lower content of methane, 4-10 times less than hydrogen, are observed in contrast to water-steam reforming of ethanol, where the content of carbon dioxide is 15-20 vol%, and methane is only 2-2.5 times less than hydrogen.
There is almost no carbon monoxide over the entire studied temperature range with a short contact time (0.5-0.6 s) of the reaction mixture with a catalyst and with an increased oxygen/ethanol molar ratio in the gas phase. It is possible to use the mixture enriched in hydrogen to power the fuel cells on proton conducting membranes.About the Authors
N. V. LapinRussian Federation
Nikolai Lapin - PhD. in Engineering, Senior Researcher at IMT RAS.
6 Academician Osipyan Str., Chernogolovka, Moscow Reg., 142432, tel.: +7 (496) 524 40 15; fax: +7 (496) 524 42 25
V. V. Grinko
Russian Federation
Valerij Grinko - Ph.D. in Chemistry, Junior Researcher at IMT RAS.
6 Academician Osipyan Str., Chernogolovka, Moscow Reg., 142432, tel.: +7 (496) 524 40 15; fax: +7 (496) 524 42 25
V. S. Bezhok
Russian Federation
Vladimir Bezhok - Junior Researcher at IMT RAS.
6 Academician Osipyan Str., Chernogolovka, Moscow Reg., 142432, tel.: +7 (496) 524 40 15; fax: +7 (496) 524 42 25
A. F. Vyatkin
Russian Federation
Anatolij Vyatkin - D.Sc. in Physics and Mathematics, Professor, Deputy Director of IMT RAS.
6 Academician Osipyan Str., Chernogolovka, Moscow Reg., 142432, tel.: +7 (496) 524 40 15; fax: +7 (496) 524 42 25
References
1. Luo M., Yi Y., Wang Sh., Wang Zh., Du M., Pan J., Wang Q. Review of hydrogen production using chemical-looping technology. Renewable and Sustainable Energy Reviews, 2018;81(2):3186-3214.
2. Nikolaidis P., Poullikkas A. A comparative over view of hydrogen production processes. Renewable and Sustainable Energy Reviews, 2017;67:597-611.
3. Guandalini G., Campanari S., Valenti G. Comparative assessment and safety issues in state-of-the-art hydrogen production technologies. Int. J. Hydrogen Energy, 2016;41(42):18901-18920.
4. Frusteri F., Bonura G. Hydrogen production by reforming of bio-alcohols. Compendium of Hydrogen Ener-gy,_Chapter 5, Woodhead Publishing, 2015; pp.109-136.
5. Khila Z., Baccar I., Jemel I., Hajjaji N. Thermoenvironmental life cycle assessment of hydrogen production by autothermal reforming of bioethanol. Energy for Sustainable Development, 2017;37:66-78.
6. Llorca J., Corberan V.C., Divins N.J., Fraile R.O., Taboada E. Hydrogen from Bioethanol. Renewable Hydrogen Technologies, Chapter 7, Elsevier Science, 2013; pp. 135-169.
7. Baruah R., Dixit M., Basarkar P., Parikh D., Bhargav A. Advances in ethanol autothermal reforming. Renewable and Sustainable Energy Reviews, 2015;51:1345-1353.
8. Hung Ch-Ch., Chen Sh-Li, Liao Yi-K., Chen Ch-H., Wang J-Han. Oxidative steam reforming of ethanol for hydrogen production on M/AhO3. Int. J. Hydrogen Energy, 2012;37(6):4955-4966.
9. Hou T., Zhang Sh., Xu T., Cai W. Hydrogen production from oxidative steam reforming of ethanol over Ir/CeO2 catalysts in a micro-channel reactor. Chem. Eng. J., 2014;255:149-155.
10. Han X., Wang Y., Zhang Y., Yu Y., He H. Hydrogen production from oxidative steam reforming of ethanol over Ir catalysts supported on Ce-La solid solution. Int. J. Hydrogen Energy, 2017;42(16):11177-11186.
11. Baruah R., Dixit M., Parejiya A., Basarkar P., Bhargav A., Sharma S. Oxidative steam reforming of ethanol on rhodium catalyst- I: Spatially resolved steady-state experiments and microkinetic modeling. Int. J. Hydrogen Energy, 2017;42(15):10184-10198.
12. Peela N.R. Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor. Int. J. Hydrogen Energy, 2011;36( 5):3384-3396.
13. Anamika S., Pant K. Oxidative Steam Reforming of Bioethanol over Rh/CeO2-Al2O3 Catalyst for Hydrogen Production. Thermodynamics & Catalysis, 2013;4(1): 119-124.
14. Han X., Yu Y., He H., Shan W. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce-La solid solution. Int. J. Hydrogen Energy, 2013;38(25):10293-10304.
15. Graschinsky C., Contreras J.L., Amadeo N., La-borde M. Ethanol Oxidative Steam Reforming over Rh(1%)/MgAl2O4/Al2O3. CatalystInd. Eng. Chem. Res., 2014;53:15348-15353.
16. Mondal T., Pant K.K., Dalai A.K. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int. J. Hydrogen Energy, 2015;40(6):2529-2544.
17. Mondal T., Pant K.K., Dalai A.K. Oxidative and non-oxidative steam reforming of crude bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Appl. Catal. A, 2015;499:19-31.
18. Palma V., Ruocco C., Meloni E., Ricca A. Oxidative steam reforming of ethanol on mesoporous silica supported Pt-Ni/CeO2 catalysts. Int. J. Hydrogen Energy, 2017;42(3):1598-1608.
19. Palma V., Ruocco C., Meloni E., Ricca A. Highly active and stable Pt-Ni/CeO2-SiO2 catalysts for ethanol reforming. J. of Cleaner Production, 2017;166:263-272.
20. Greluk M., Slowik G., Rotko M., Machocki A. Steam reforming and oxidative steam reforming of ethanol over PtKCo/CeO2 catalyst. Fuel, 2016;183:518-530.
21. Lima S.M. de., Silva A.M. da, Costa L.O.O. da, Assaf J. M., Mattos L.V., Sarkari R., Venugopal A., Noronha F. B. Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from Lai-xCexNiO3 perovskite-type oxides. Appl. Catal. B, 2012;121-122:1-9.
22. Weng S-F., Hsieh H-C., Lee C-S. Hydrogen production from oxidative steam reforming of ethanol on nickel-substituted pyrochlore phase catalysts. Int. J. Hydrogen Energy, 2017;42(5):2849-2860.
23. Fang,W., Pirez C., Paul S., Capron M., Jobic H., Dumeignil F., Jalowiecki-Duhamel L. Room Temperature Hydrogen Production from Ethanol over Ce-NxHzOy Nano-Oxyhydride Catalysts. Chem. Cat. Chem, 2013;5(8):2207-2216.
24. Pirez C., Fang W., Capron M., Paul S., Jobic H., Dumeignil F., Jalowiecki-Duhamel L. Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Appl. Catal. A, 2016;518:78-86.
25. Fang W., Pirez C., Paul S., Jimenez-Ruiz M., Jobic H., Dumeignil F., Jalowiecki-Duhamel L. Advanced functionalized Mg2AlNixHZOY nano-oxyhydrides ex-hydrotalcites for hydrogen production from oxidative steam reforming of ethanol. Int. J. Hydrogen Energy, 2016;41(34):15443-15462.
26. Andonova S., Avila C.N. de, Arishtirova K., Bueno J.M.C., Damyanova S. Structure and redox properties of Co promoted Ni/Al2O3 catalysts for oxidative steam reforming of ethanol. Appl. Catal. B, 2011; 105(3-4):346-360.
27. Guil-Lopez R., Navarro R.M., Pena M.A.G., Fierro J.L. Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts. Int. J. Hydrogen Energy, 2011;36(2):1512-1523.
28. Munoz M., Moreno S., Molina R. Oxidative steam reforming of ethanol (OSRE) over stable NiCo-MgAl catalysts by microwave or sonication assisted coprecipitation. Int. J. Hydrogen Energy, 2017;42(17):12284-12294.
29. Greluk M., Rybak P., Slowiket G., Rotko M., Machocki A. Comparative study on steam and oxidative steam reforming of ethanol over 2KCo/ZrO2 catalyst. Catalysis Today, 2015;242(A):50-59.
30. Morales M., Segarra M. Steam reforming and oxidative steam reforming of ethanol over La0.6Sr0.4CoO3 - I perovskite as catalyst precursor for hydrogen production. Appl. Catal. A, 2015;502:305-311.
31. Kerzhentsev M.A., Matus E.V., Ismagilov I.Z., Ushakov V.A., Stonkus O.A., Larina T.V., Kozlova G.S., Bharali P., Ismagilov Z.R. Structural and morphological properties of Ce1-x MxOy carriers (M = Gd, La, Mg) for ethanol autothermal conversion catalysts (Strukturnye i morfologicheskie svoistva nositelei Ce1-xMxOy (M = Gd, La, Mg) dlya katalizatorov avtotermicheskoi konversii etanola). Journal of Structural Chemistry, 2017;58(1):126-134.
32. Iulianelli A., Basile A. Hydrogen production from ethanol via inorganic membrane reactors technology: a review. Catal. Sci. Technol, 2011;1(3):366-379.
33. Zhu N., Dong X., Liu Z., Zhang G., Jin W., Xu N. Toward highly-effective and sustainable hydrogen production: bio-ethanol oxidative steam reforming coupled with water splitting in a thin tubular membrane reactor. Chem. Commun., 2012;48(57):7137-7139.
34. Tosti S., Zerbo M., Basile A., Calabro V., Borgognoni F., Santucci A. Pd-based membrane reactors for producing ultra pure hydrogen: Oxidative reforming of bio-ethanol. Int. J. Hydrogen Energy, 2013;38(1):701-707.
35. Iulianelli G., Palma V., Bagnato G., Ruocco C., Huang Y., Veziroglu N.T., Basile A. From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor. Renewable Energy, 2018;119:834-843.
36. Nieto-Marqueza A., Sanchez D., Miranda-Dahdal A., Dorado F., Lucas-Consuegra A. de, Valverde J.L. Autothermal reforming and water-gas shift double bed reactor for H2 production from ethanol. Chemical Engineering & Processing, 2013;74:14-18.
37. Hou T., Zhang S., Chen Y., Wang D., Cai W. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. Renewable and Sustainable Energy Reviews, 2015;44:132-148.
38. Lapin N.V., Red'kin A.N., Bezhok V.S., Vyatkin A.F. Production of hydrogen by catalytic pyrolysis of ethanol on a Nickel catalyst (Poluchenie vodoroda kataliticheskim pirolizom etanola na nikelevom kataliza-tore). Russian Journal of Physical Chemistry A: Focus on Chemistry, 2009;83(11):1855-1859 .
39. Lapin N.V., Bezhok V.S. Low-temperature reforming of ethanol on Nickel-copper catalyst (Niz-kotemperaturnyi reforming etanola na nikel'-mednom katalizatore). Russian Journal of Applied Chemistry, 2011;84(6):1007-1011.
40. Lapin N.V., Bezhok V.S., Vyatkin A.F. Hydrogen production for fuel cell supply by low-temperature ethanol conversion on Ni/ZnO and Ni-Cu/ZnO catalysts (Poluchenie vodoroda dlya pitaniya toplivnykh ele-mentov nizkotemperaturnoi konversiei etanola na katali-zatorakh Ni/ZnO i Ni-Cu/ZnO). Russian Journal of Applied Chemistry, 2014;87(5):608-612.
41. Lapin N.V., Bezhok V.S., Grinko V.V., Vyatkin A.F. The choice of catalyst substrate to reduce the content of carbon monoxide in the reforming of ethanol (Vybor nositelya katalizatora dlya snizheniya soderzhaniya monookisi ugleroda pri reforminge etanola). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(21);216-221 (in Russ.).
42. Grin'ko V.V., Bezhok V.S., Lapin N.V., Vyatkin A.F. Low-temperature water-steam ethanol conversion on Ni/ZnO catalyst in microchannel reactor (Nizkotemper-aturnaya vodnoparovaya konversiya etanola na kataliza-tore Ni/ZnO v mikrokanal'nom reaktore). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;(15-18); 112-121 (in Russ.).
43. Rabenstein G., Hacker V. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidationand combined auto-thermal reforming: A thermodynamic analysis. J. of Power Sources, 2008;185(2):1293-1304.
44. Graschinsky C., Giunta P., Amadeo N., Laborde M. Thermodynamic analysis of hydrogen production by autothermal reforming of ethanol. Int. J. Hydrogen Energy, 2012;37(13):10118-10124.
45. Liu S., Zhang K., Fang L., Li Y. Thermodynamic Analysis of Hydrogen Production from Oxidative Steam Reforming of Ethanol. Energy & Fuels, 2008;22:1365-1370.
Review
For citations:
Lapin N.V., Grinko V.V., Bezhok V.S., Vyatkin A.F. Hydrogen Production by Low-Temperature Oxidative Water-Steam Reforming of Ethanol on Ni/ZnO Catalyst. Alternative Energy and Ecology (ISJAEE). 2019;(7-9):62-72. (In Russ.) https://doi.org/10.15518/isjaee.2019.07-09.062-072