Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Analysis of Nitrogen Oxides Emission by Modern Vehicles when Used Hydrogen or Other Natural and Synthetic Fuels in Combustion Chamber

https://doi.org/10.15518/isjaee.2019.07-09.073-084

Abstract

This paper presents calculated analysis of the equilibrium emission of nitrogen oxides at the exhaust of carburetor and diesel internal combustion engines. The temperature of the fuel oxidation process is assumed to be 1,400 °C, the pressure for carburetor and diesel engines to be 60 and 80 at, respectively. We have conducted studies for natural and artificial fuels: hydrogen, ethanol, methanol, gasoline, diesel fuel and methane with an excess air ratio corresponding to the oxidation temperature of fuels 1,400 °C. The method of calculating the equilibrium composition based on the equilibrium constant and the equations of mass conservation is applied. It is shown that with an increase in pressure from 1 to 60 bar for the carburetor engines and up to 80 bar for the diesel engines the reaction of nitrogen dioxide formation shifts towards an increase in NO2. Increasing the pressure has no effect on the formation of NO, since the reaction proceeds without changes in the volume. It is established that the main polluting atmospheric component is NO. However, it is advisable to make greater use of fuel with the lowest yield nitrogen dioxide (methane and methanol) because nitrogen dioxide (NO2) pertaining to the chemicals 2nd class of danger is the most dangerous to humans. It is established that the reducing temperature of oxidation using hydrogen as fuel for electrochemical power generators allows us to reduce the emission of nitrogen oxides over an order of magnitude in comparison with the best results for internal combustion engines.

About the Authors

S. E. Shcheklein
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

Sergey Shcheklein - D.Sc. in Engineering, Professor, the Head of y" Atomic Stations and Renewable Energy Sources Department UFU; a member of International Energy Academy; a member of the editorial board of “Institute of Higher Education News. Nuclear Power”; International Scientific Journal for Alternative Energy and Ecology (ISJAEE); “Nuclear Power Units Heat Engineering” USTU; Odessa National Polytechnic University article collection; Scientific Journal of “Energy Effectiveness and Analysis”.

19 Mira Str., Ekaterinburg, 620002, tel.: +7(343)375 95 08



A. M. Dubinin
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

Alexey Dubinin - D.Sc. in Engineering, Professor of Power Engineering and Thermal Engineering Department UrFU.

19 Mira Str., Ekaterinburg, 620002, tel.: +7(343)375 95 08

h-index 4



References

1. Sun J., Caton J.A., Jacobs T.J. Oxides of nitrogen emissions from biodiesel-fuelled diesel engines. Progress in Energy and Combustion Science, 2010;36(6):677-695.

2. Tomic M., Burisic-Mladenovic N., Micic R., Simikic M., Savin L. Effects of accelerated oxidation on the selected fuel properties and composition of biodiesel. Fuel, 2019;235:269-276.

3. Bruce G., Miller B.G. Formation and Control of Nitrogen. Clean Coal Engineering Technology (Second Edition), Butterworth-Heinemann, 2017; pp. 507-538.

4. Ringsmuth A.K., Landsberg M.J., Hankamer B. Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations. Renewable and Sustainable Energy Reviews, 2016;62:134-163.

5. Ganesh I. Solar fuels vis- G-vis electricity generation from sunlight: The current state-of-the-art (a review). Renewable and Sustainable Energy Reviews, 2015;44:904-932.

6. Chong H.S., Park Y., Kwon S., Hong Y. Analysis of real driving gaseous emissions from light-duty diesel vehicles. Transportation Research Part D: Transport and Environment, 2018;65:485-499.

7. Miller B. Nitrogen oxides formation and control. Fossil Fuel Emissions Control Technologies. Butterworth-Heinemann, 2015; pp. 243-280.

8. Artamonova V.G., Muhin N.A. Intoxication irritant substances (chlorine, take, sulphur dioxide, hydrogen sulphide, nitrogen oxides (Intoksikacii veshchest-vami razdrazhayushchego deistviya (hlor, hlorovodo-rod, sernisty angidrid, serovodorod, oksidy azota) / Professional'nye bolezni. Moscow: Medicina, 2004; 480 p. (in Russ.).

9. Shelef M., Kukkonen C.A. Prospects of hydrogen-fueled vehicles. Progress in Energy and Combustion Science, 1994;20(2):139-148.

10. Verhelst S., Turner J.W.G., Sileghem L., Van-coillie J. Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 2019;70:43-88.

11. Dell R.M., Moseley P.T., Rand D.A.J. Chapter 3 - Unconventional Fuels. Towards Sustainable Road Transport, Academic Press, 2014; pp. 86-108.

12. Simmonsn W.A., Seakinsn P.W. Estimations of primary nitrogen dioxide exhaust emissions from chemiluminescence NOx measurements in a UK road tunnel. Science of the Total Environment, 2012;438:248-259.

13. KhannT., Frey H. C. Comparison of real-world and certification emission rates for light duty gasoline vehicles. Science of The Total Environment, 2018;622:790-800.

14. Warnatz J., Maas U., Dibble R.W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer, 2006; 378 p.

15. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions. 3rd Edition. CRC Press, 2010; 538 p.

16. Reid H., Aherne J. Staggering reductions in atmospheric nitrogen dioxide across Canada in response to legislated transportation emissions reductions. Atmospheric Environment, 2016;146:252-260.

17. Huang X., Wang Y., Xing Z., Du K. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx. Science of The Total Environment, 2016;565:698-705.

18. Lenner M. Nitrogen dioxide in exhaust emissions from motor vehicles. Atmospheric Environment, 1987;21(1):37-43.

19. Baskakov A.P., Mancev V.V., Raspopov I.V. Boilers and fluidized bed combustion (Kotly i topki s kipyashchim sloem). Moscow: EHnergoatomizdat Publ., 1996; 352 p. (in Russ.).

20. Zel'dovich Ya.B., Sadovnikov P.Ya., Frank-Kameneckij D. A. Nitrogen oxidation during combustion (Okislenie azota pri gorenii). Moscow-Leningrad: Izda-tel'stvo AN USSR, 1947; 148 p. (in Russ.).

21. Quick reference guide of physical and chemical quantities (Kratkij spravochnik fiziko- himicheskih veli-chin). 12-e izdanie. Ed. A.A. Ravdel’ i A.M. Ponomareva. Moscow: OOO TID “ARIS”, 2010; 240 p. (in Russ.).

22. Zhuhovickij L.A., Shvarcman L.A. Physical chemistry (Fizicheskaya himiya). Moscow: Metallurgiya Publ., 2001; 688 p. (in Russ.).

23. Karapet'yantc M.H., Karapet'yantc M.L. The basic thermodynamic constants of inorganic and organic substances (Osnovnye termodinamicheskie konstanty neorganicheskih i organicheskih veshchestv). Moscow: Himiya, 1968; 470 p. (in Russ.).

24. Task book for technical thermodynamics and theory of heat and mass transfer (Zadachnik po tekhni-cheskoj termodinamike i teorii teplomassoobmena: Uchebnoe posobie dlya ehnergomashinostroitel'nyh spec. vuzov). V.N. Afanas'ev, S.I. Isaev, I.A. Kozhinov, et al.; Ed. V.I. Krutov, G.B. Petrazhickii. Moscow: Vyssh. Shkola Publ.. 1986; 383 p. (in Russ.).

25. Kireev V.A. Practical methods of calculations in thermodynamics and chemical reactions (Metody praktichekih raschetov v termodinamike i himicheskih reak-ciyah). Moscow: Himiya Publ., 1975 (in Russ.).

26. Munc V.A., Pavlyuk E.Yu. Burning basics: a tutorial (Osnovy goreniya: Uchebnoe posobie). Ekaterinburg: GOU VPO UGTU-UPI, 2005; 102 p. (in Russ.).

27. The basics of practical theory of combustion: a textbook for universities (Osnovy prakticheskoj teorii goreniya: Uchebnoe posobie dlya vuzov) / V.V. Pome-rancev, K.M. Arefev, D.B.Ahmedov [et al.]; Ed. V.V. Pomerancev. Leningrad: Ehnergoatomizdat Publ., 1986; 312 p. (in Russ.).

28. Glushko V.P. Thermodynamic constants substances (Termodinamicheskie konstanty veshchestv). Moscow: AN USSR, 1978; 534 p. (in Russ.).

29. Baskakov A.P. Heating and cooling of metals in a fluidized bed (Nagrev i ohlazhdenie metallov v ki-pyashchem sloe). Moscow: Metallurgiya Publ., 1974; 272 p. (in Russ.).

30. Gorbacheva L.A. What could us capital prepares (Chto smog stolichnyj nam gotovit). Energiya, 2011;(1);48-52 (in Russ.).

31. Litvinova N. A., Molotilova S. A. Impact of emissions of motor transport on morbidity and risk the health of the population of Tyumen (Vliyanie vybrosov avtotransporta na zabolevaemost' i risk zdorov'yu nase-leniya g. Tyumeni). Ekologiya cheloveka, 2018;(8):11-16 (in Russ.).

32. Sinay J., Puskar M., Kopas M. Reduction of the NOx emissions in vehicle diesel engine in order to fulfill future rules concerning emissions released into air. Science of the Total Environment, 2018;624:1421-1428.

33. Verhels S., Turner J.W.G., Sileghem L., Van-coillie J. Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 2019;70:43-88.

34. Salvi B.L., Subramanian K.A., Panwar N.L. Alternative fuels for transportation vehicles: A technical review. Renewable and Sustainable Energy Reviews, 2013;25:404-419.

35. He L., Jingnan Hub J., Yang L., Li Z., Zheng X., Xie S., Zub L., Chen J., Li Y.,Wua Y. Real-world gaseous emissions of high-mileage taxi fleets in China. Science of the Total Environment, 2019;659:267-274.

36. Miller J.A., Bowman C.T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989;15(4):287-338.

37. Wunning J.A., Wunning J.G. Flameless oxidation to reduce thermal NO-formation. Progress in Energy and Combustion Science, 1997;23(1):83-94.

38. Smoot L.D., Hill S.C., Xu H. NOx control through reburning. Progress in Energy and Combustion Science, 1998;24(5):385-408.

39. Glarborg P., Jensen A.D., Johnsson J.E. Fuel nitrogen conversion in solid fuel fired. Progress in Energy and Combustion Science, 2003;29(2):89-113.

40. Konnov A.A., Javed M.T., Kassman H., Irfan N. NOx Formation, Control and Reduction Techniques. Handbook of Combustion. Vol. 2: Combustion Diagnostics and Pollutants. Wiley, 2010; pp. 439-464.

41. Glarborg P., Miller J.A., Ruscic B., Klippenstein S.J. Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 2018;67:31-68.

42. Sobrino F.H., Monroy C.M., Perrez J.L.H. Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe. Renewable and Sustainable Energy Reviews, 2010;14:772-780.

43. Bernaya C., Marchanda M., Cassir M. Prospects of different fuel cell technologies for vehicle applications. Journal of Power Sources, 2002;108:139-152.

44. Reid H., Aherne J. Staggering reductions in atmospheric nitrogen dioxide across Canada in response to legislated transportation emissions reductions. Atmospheric Environment, 2016;146:252-260.

45. Shcheklein S.E., Dubinin A.M. Study of the influence of fuel to energy indicators electrochemical generator consisting of cogeneration plant (Issledovanie vliya-niya vida topliva na ehnergeticheskie pokazateli ehlektro-himicheskogo generatora v sostave kogeneracionnoj usta-novki). International Journal for Alternative Energy and Ecology (ISJAEE), 2018;(16-18):12-22 (in Russ.).

46. Shcheklein S.E., Dubinin A.M. Stoichiometric analysis of air oxygen consumption in modern vehicles using natural and synthetic fuels. IOP Conference Series: Earth and Environmental Science, 2018;177(1):012020.


Review

For citations:


Shcheklein S.E., Dubinin A.M. Analysis of Nitrogen Oxides Emission by Modern Vehicles when Used Hydrogen or Other Natural and Synthetic Fuels in Combustion Chamber. Alternative Energy and Ecology (ISJAEE). 2019;(7-9):73-84. (In Russ.) https://doi.org/10.15518/isjaee.2019.07-09.073-084

Views: 948


ISSN 1608-8298 (Print)