

The Solar Hot Water Supply System for an Inhabited Base Located at the Moon Poles
https://doi.org/10.15518/isjaee.2019.07-09.085-096
Abstract
The use of the environmentally friendly solar thermal energy runs into some problems during practical realization of the power systems due to the difficulties of accumulating and storing the produced thermal energy during the lunar night. The paper deals with a solar hot water supply system for a life support system of the lunar bases located at the peaks of eternal light of the North and South Poles of the Moon and able to maintain hot water temperature during a lunar year taking into account the solar eclipses at the Moon. Solar hot water supply system includes a solar collector in the form of an annular cylinder with an axis perpendicular to the surface of the Moon with hydrogen coolant and seasonal storage heater located in lunar soil filled with crushed regolith to maintain hot water temperature during the periods without sun illumination. Design parameters as well as the system efficiency have been evaluated on the basis of the developed mathematical model and computer simulation of dynamic conditions for the system located at the ridge of Peary crater at the North Pole and the ridges of Shackleton and De Gerlache craters and Malapert Mountain at the South Pole of the Moon. It is shown that for the North Pole the water temperature at the lunar base reaches the required level at the end of the first lunation and practically does not change during the solar eclipse due to the presence of heat in the solar system. When the solar system is located in any peak of eternal light at the South Pole, the time it takes for the system to reach the required thermal regime does not exceed 4 lunations, while the required level of hot water is provided throughout the year. It is noted that due to the presence of dark intervals in the southern peaks of eternal light, significantly larger areas of the mid-solar collector and twice the size of the heat accumulator are required compared to the North Pole.
About the Authors
N. S. KudryavtsevaRussian Federation
Natalia Kudriavtseva - D.Sc. in Engineering, Professor.
4 VolokolamskoeSh., Moscow, 125993, tel.: +7 (499) 158 43 17
E. R. Sadretdinova
Russian Federation
Elnara Sadretdinova - Ph.D. in Engineering, Associate Professor at Management of Exploitation in Rocket and Space Systems Department.
4 VolokolamskoeSh., Moscow, 125993, tel.: +7 (499) 158 43 17
V. A. Zagovorchev
Russian Federation
Vladimir Zagovorchev - PhD. in Engineering, Assistant Professor at Management of Exploitation in Rocket and Space Systems Department.
4 Volokolamskoe Sh., Moscow, 125993, tel.: +7 (499) 158 43 17
SPIN-код: 3162-3526
References
1. The moon - a step towards the technology of the solar system (Luna - shag k tekhnologiyam osvoeniya Solnechnoi sistemy) // Pod nauchnoi red. V.P. Legostae-va, V.A. Lopoty. Moscow: RKK “Energiya”, 2011; 584 p. (in Russ.).
2. Semenov Yu.P. Results and problems of development of Rocket and Space Corporation “Energia” in the field of space energy (Rezul'taty i problemy raz-rabotok raketno-kosmicheskoi korporatsii “Energiya” v oblasti kosmicheskoi energetiki). Izvestiya RAN. Ener-getika, 2003;5:3-20 (in Russ.).
3. Shibanov G.P. Space habitability and human security in it (Obitaemost' kosmosa i bezopasnost' pre-byvaniya v nem cheloveka). Moscow: Mashinostroenie Publ., 2007; 544 p. (in Russ.).
4. Gribkov A.S., Evdokimov R.A. Rational appearance of the energy supply system of the inhabited lunar base at different stages of its development (Ratsional'nyi oblik sistemy energosnabzheniya obitaemoi lunnoi bazy na raznykh etapakh ee osvoeniya). Izvestiya RAN. Energetika, 2011;3:105-116 (in Russ.).
5. Dakhoul Y.M., Somers R.E., Haynes R.D. A conceptual design for a space-based solar water heater. Solar Energy, 1990;44(3):161-171.
6. Beskrovnaya I.A., Evdokimov R.A., Kinash P.M., Kovalev I.I., Tugaenko V.Yu. Comparative evaluation of the technical and economic efficiency of the use of solar and nuclear power plants as part of the lunar base (Sravnitel'naya otsenka tekhniko-ekonomicheskoi effektivnosti ispol'zovaniya solnechnykh i yadernykh energeticheskikh ustanovok v sostave lunnoi bazy). Kosmicheskaya tekhnika i tekhnologii, 2014;4(7):6-88 (in Russ.).
7. Kudriavtseva N.S., Sadretdinova E.R. The solar hot water system for a habitable lunar base (Gelio-sistema goryachego vodosnabzheniya dlya obitaemoi lunnoi bazy). International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2017;(7-9):21-33 (in Russ.).
8. Garcia R.F. Preliminary design study for a lunar solar power station using local resources. Solar Energy, 2012;86(9):2871-2892.
9. Bern Dzh. D. Advantages of placing the lunar base at the pole // Lunar bases and space activity in the XXI century (Preimushchestva razmeshcheniya lunnoi bazy na polyuse (Lunnye bazy i kosmicheskaya deyatel'nost' v XXI veke) Ed. V.V. Mendela. Houston, 1985; pp. 105-115 (in Russ.).
10. Vaniman D., Reedy R., Heiken G., Olhoeft G., Mendell W. The Lunar Environment. In Lunar Sourcebook. Cambridge Univ. Press., 1991; pp. 27-60.
11. LCROSS Impact Data Indicates Water on Moon. Available on: http://www.nasa.gov./mission_pages/LCROSS/main/prelim_water_results.html (10.21.2016).
12. Petrov D.V. The area of cold traps on the surface of the moon (Ploshchad' kholodnykh lovushek na poverkhnosti Luny). Astronomicheskii vestnik, 2003;37(4):285-291 (in Russ.).
13. Vasavada A.R., Paige D.A., Wood S.E. NearSurface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Icarus, 1999;141:179-193.
14. Margot J.L., Campbell D.D., Jurgens R.F., Slade M.A. Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Location. Science, 1999;284:1658-1660.
15. Bussey D.B.J., McGovern J.A., Spudis P.D., Neish C.D., Noda H., Ishihara Y., Sorensen S.A. Illumination Conditions of the South Pole of the Moon Derived Using Kaguya Topography. Icarus, 2010;208:558-564.
16. Kudryavtseva N.S. Fundamentals of designing effective spacecraft thermal control systems (Osnovy proektirovaniya effektivnykh sistem termoregulirovaniya kosmicheskikh apparatov). Moscow: Izd-vo MAI, 2012; 228 p. (in Russ.).
17. Kudryavtseva N.S., Malozemov V.V. Optimization of parameters of the hot water solar system (Optimi-zatsiya parametrov geliosistemy goryachego vodosnabzheniya). Konversiya v mashinostroenii, 2008;1:54-55 (in Russ.).
18. Malozemov V.V., Kudryavtseva N.S. Joint optimization of mass-energy characteristics of the thermal control system of spacecraft and instrumentation complex while ensuring the required reliability (Sovmestnaya optimizatsiya massoenergeticheskikh kharakteristik sistemy termoregulirovaniya kosmicheskikh apparatov i pribornogo kompleksa pri obespechenii trebuemoi nadezhnosti). Vestnik MAI, 2009;16(1):5-14 (in Russ.).
19. Kudryavtseva N.S., Malozemov V.V. Space support systems: the basics of ensuring the effectiveness of spacecraft thermal control systems (Kosmich-eskie sistemy zhizneobespecheniya: osnovy obespeche-niya effektivnosti sistem termoregulirovaniya kosmicheskikh apparatov). Inzhenernaya ekologiya, 2012;2:16-36 (in Russ.).
20. Malozemov V.V., Kudryavtseva N.S. Optimization of spacecraft thermal control systems (Optimi-zatsiya sistem termoregulirovaniya kosmicheskikh apparatov). Moscow: Mashinostroenie Publ.,1988; 108 p. (in Russ.).
Review
For citations:
Kudryavtseva N.S., Sadretdinova E.R., Zagovorchev V.A. The Solar Hot Water Supply System for an Inhabited Base Located at the Moon Poles. Alternative Energy and Ecology (ISJAEE). 2019;(7-9):85-96. (In Russ.) https://doi.org/10.15518/isjaee.2019.07-09.085-096