

Influence of Germanium and Zinc Selenium Nanocrystals on the Photoelectric Properties of the n-GaAs – p-(GaAs)0.69(Ge2)0.17(ZnSe)0.14 Heterostructure
https://doi.org/10.15518/isjaee.2019.10-12.043-051
Abstract
The article determines the technological conditions of growing the films of solid solution (GaAs)1-x-y(Ge2)x(ZnSe)y on GaAs substrates by the method of liquid phase epitaxy from the tin melt-solution. The grown epitaxial films had the thickness of ~ 10 μm, n-type conductivity with specific resistances of ~ 0.1 Ωˑcm and the current carrier concentration of 5.1ˑ1017 cm-3. Spectral photosensitivity of n-GaAs – p-(GaAs)0.69(Ge2)0.17(ZnSe)0.14heterostructureshave been studied and two distinct peaks corresponding to Ge nanocrystals with GaAs molecule compounds and ZnSe quantum dots have been detected. It is shown that the photosensitivity spectrum of the studied solid solution has six Gaussian components which correspond to the pair atoms of Ge2 and compounds AsGe, GaGe, GeSe, AsZn, GaSe and ZnSe. The spatial configurations of tetrahedral bonds within nanoclusters formed by Ge and ZnSe impurities based on a GaAs unit cell are presented. It is also determined that the nanoclusters in the solid solution (GaAs)1-x(Ge2)x consist of three As atoms, two Ge atoms and three Ga atoms. Since the unit cell of the lattice with the diamond-like structure consists of eight atoms, the linear dimensions of the nanocluster are 5.6, 5.6, 5.6 Å. In the nanocluster in the solid solution (GaAs)1-x-y(Ge2)x(ZnSe)y formed by the GaAs molecule, ZnSe and the Ge2 pair atoms contains 14 atoms: five As atoms, two Ge atoms, one Se atom, one Zn atom, and five Ga atoms. So the As and Ga atoms are bound through the Ge, Zn, and Se atoms, and therefore the linear dimensions of the nanoclusters become 5.6; 5.6; 10 Å. Thus, the matrix lattice consists of GaAs molecules and twin Ge atoms, and ZnSe molecules are located on their surface defective regions. Since zinc selenide molecules and germanium selenide compounds form three acceptor levels in the GaAs valence band, and the ZnSe lattice parameter is slightly larger than the matrix lattice, at ZnSe locations, the lattice microdistortions are observed and they have an increased potential which promotes the formation of ZnSe nanocrystals.
Keywords
About the Authors
S. Z. ZainabidinovUzbekistan
Sirojiddin Zainabidinov - D.Sc. in Physics and Mathematics, Professor at Chair of Physics, Andijan State University, Academician of the Academy of Sciences of the Republic of Uzbekistan
129 University Str., Andijan, 170100
A. Y. Boboev
Uzbekistan
Akramjon Boboev - Ju-nior Researcher at Institute of Nuclear Physics of Uzbekistan AS
129 University Str., Andijan, 170100,
1 Khuroson Str., Tashkent, 100214
J. N. Usmonov
Uzbekistan
Johongir Usmonov - Doc-toral Student
129 University Str., Andijan, 170100
References
1. Blokhin S.A.,Sakharov A.V., Nadtochy A.M., Pauysov A.S., Maximov M.V., Ledentsov N.N., Kovsh A.R., Mikhrin S.S., Lantratov V.M., Mintairov S.A., Kaluzhniy N.A., Shvarts M.Z. AlGaAs/GaAs Photovol-taic Cells with an Array of InGaAs QDs (Fotoelektri-cheskie preobrazovateli AlGaAs/GaAs s massivom kvantovyh tochek InGaAs). Physics and Technics of Semiconductors (PhTS) (Fizika i tehnika poluprovodni-kov), 2009;43(4):537–542 (in Russ.).
2. Mukashev B.N., Betekbaev A.A., Kalygulov D.A., Pavlov A.A., Skakov D.M. Investigation of processes of silicon production and technology development manufacturing of solar cells (Issledovaniya protsessov polucheniya kremniya i razrabotka tehnologii izgotovleniya solnechnyh elementov). Physics and Technics of Semiconductors (PhTS)(Fizika i tehnika poluprovodnikov), 2015;49(10):1421–1428 (in Russ.).
3. Saidov A.S., Zainabidinov S.Z., Kalanov M.U., Boboev A.Y., Kutlimurotov B.R. Peculiarities of Photo-sensitivity of n(GaAs)–p(GaAs)1–x–y(ZnSe)x(Ge2)y Structures with Quantum Dots. Applied Solar Energy, 2015;51(3):206–208.
4. Aroutiounian V., Petrosyan S., Khachatryan A., Touryan K. Quantum dot solar cells. Journal of Applied Physics, 2001;(89):268–2271.
5. Ledentsov N.N., Ustinov V.M., Shchukin V.A., Kop’ev P.S., Alferov Zh.I., Bimberg D. Quantum dot heterostructures: fabrication, properties, lasers (Getero-struktury s kvantovymi tochkami: poluchenie, svoistva, lazery). Physics and Technics of Semiconductors (PhTS) (Fizika i tehnika poluprovodnikov),1998;32(4):385–410 (in Russ.).
6. Saidov A.S., Boboev A.Y. Growth of solid solu-tions of replacement (GaAs)0.69(Ge2)0.17(ZnSe)0.14 and (GaAs)0.76(ZnSe)0.15(Ge2)0.09. The International Symposium “New Tendencies of Developing Fundamental and Applied Physics: Problems, Achievements, Prospectives” November 10–11, 2016; pp. 178–180.
7. Zainabidinov S.Z., Saidov A.S., Leiderman A.Yu., Kalanov M.U., Usmonovand Sh.N., Boboev A.Yu. Growth, Structure, and Properties of GaAs-Based (GaAs)1-x-y(Ge2)x(ZnSe)y Epitaxial Films. Semiconductors, 2016;50(1):59–65.
8. Saidov A.S., Saidov M.S., Koshchanov E.A. Liquid-Phase Epitaxy of Compensated Layers of Gallium Arsenide and Solid Solutions on Its Base (Zhidkostnaya epitaksiya kompensirovannyh sloev arsenida-galliya i tverdyh rastvorov na ego osnove). Fan, Tashkent, 1986; p. 127 (in Russ.).
9. Khludkov S.S. Diffusion of impurities in gallium arsenide, diffusion structures and devices (Diffuziya primesei v arsenidagalliya, diffuzionnye struktury i pribory). Bulletin of Tomsk State University (Vestnik Tomskogo gosudarstvennogo universiteta), 2005;(285):84–94 (in Russ.).
10. Zhuravlev K.S., Chikichev S.I., Shtaske R., Ya-kusheva N.A. Investigation of complexation in epitaxial heavily doped p-GaAs:Ge by photoluminescence method (Issledovanie kompleksoobrazovaniya v epitaksial'nom sil'no legirovannom p-GaAs:Ge metodom fotolyuminest-sentsii). Physics and Technics of Semiconductors (PhTS)(Fizika i tehnika poluprovodnikov), 1990;24(9):1645–1649 (in Russ.).
11. Zainabidinov S., Kalanov M., Boboev A. Structural characteristics of n-GaAs – p-(GaAs)1–x–y(Ge2)x(ZnSe)y heterostructures. International Conference “Fundamental and Applied Problems of Physics” (Mezhdunarodnaya konferentsiya “Fundamental'nye i prikladnye voprosy fiziki”), June 13–14, 2017; pp. 107–110 (in Russ.).
12. Boboev A.Yu., Zainabidinov S.Z., Saidov A.S., Kalanov M.U. Electrical and Photoelectric Properties of Epitaxial films (GaAs)1-x-y(Ge2)x(ZnSe)y (Elektricheskie i fotoelektricheskie svoistva epitaksial'nyh plenok (GaAs)1-x-y(Ge2)x(ZnSe)y). Uzbek Journal of Physics (UJPh), 2015;17(4):218–224 (in Russ.).
13. Aleshkin Ya., Dubinov A.A. Direct band Ge and Ge/InGaAs quantum wells in GaAs. Journal of Applied Physics (J. Appl. Phys.), 2011;109(12):107.
14. Polushina I.K., Rud’ V.Yu., Rud’ Yu.V. Elec-trical and photoluminescence properties of GaAs–AIIBIVCV2 single crystals (Elektricheskie i lyuminest-sentnye svoistva monokristallov GaAs–AIIBIVCV2). Physics and Technics of Semiconductors (PhTS)(Fizika i tehnika poluprovodnikov), 1999;33(6):897–700 (in Russ.).
15. Bletskan D.I., Madyar J.J., KabaciyV.N. Influence of the deviation from stoichiometry and the doping of GeSe layered crystals on their photoconductivity spectra (Vliyanie otkloneniya ot stehiometrii i legirova-niya na spektry fotoprovodimosti sloistyh kristallov GeSe). Physics and Technics of Semiconductors (PhTS)(Fizika i tehnika poluprovodnikov), 2006;40(2):142–147 (in Russ.).
16. Saidov A.S., Saidov M.S., Usmonov Sh.N., Leiderman A.Yu., Kalanov M.U., Gaimnazarov K.G., Kurmantaev A.N. Growth of (GaAs)1x(ZnSe)x solid solution films and investigation of their structural and some photoelectric properties (Vyrashсhivanie plenok tverdogo rastvora (GaAs)1−x(ZnSe)x i issledovanie ih strukturnyh i nekotoryh fotoelektricheskih svoistv). Physics of the Solid State (PhSS)(Fizika tverdogo tela), 2011;53(10):1910–1919 (in Russ.).
17. Suprun S.P., Sherstyakova V.N., FedosenkoE.V. Epitaxy of ZnSe on GaAs from ZnSe compound source (Epitaksiya ZnSe na GaAs pri ispol'zovanii v kachestve istochnika soedineniya ZnSe). Physics and Technics of Semiconductors (PhTS)(Fizika i tehnika poluprovodnikov), 2009;43(11):1526–1531 (in Russ.).
18. Tkachenko I.V. Mechanism of the Defecting of Luminescence in homeless and Tellurium-doped Crystals of Zinc Selenium (Mehanizm defektoutvo-rennya lyuminestsentsii ta bezdomishkovih i legirovanih tellurom kristallah selenidu tsinku). Dis. Ph.D., 2005:136 (in Ukr.).
19. Zaynabidinov S.Z., Saidov A.S., Kalanov M.U., Boboev A.Y. High-resolution X-ray diffraction studies of (GaAs)1-x-y(Ge2)x(ZnSe)y solid solution films (Vysokorazreshayushhie rentgeno-difraktsionnye issledovaniya plenok tverdyh rastvorov (GaAs)1-x-y(Ge2)x(ZnSe)y). Reports of the AS RUz (RASRUz)(DAN RUz), 2015;(3):18–21 (in Russ.).
20. Sluchansky I.A. Fundamentals of materials science and semiconductor technology (Osnovy mate-rialovedeniya i tehnologii poluprovodnikov). Mos-cow: Mir Publ., 2002; p. 380 (in Russ.).
21. Saidov M.S. Solid solutions of multicomponent semiconductor compounds with nano-defects and impurity voltaic effects in photovoltaic cells (Tverdye rastvory mnogokomponentnyh poluprovodnikovyh soedinenii s nano-defektami i primesnye vol'taicheskie effekty v fotoelementah). Geliotekhnika (Geliotehnika), 2006;(4):48–54 (in Russ.).
Review
For citations:
Zainabidinov S.Z., Boboev A.Y., Usmonov J.N. Influence of Germanium and Zinc Selenium Nanocrystals on the Photoelectric Properties of the n-GaAs – p-(GaAs)0.69(Ge2)0.17(ZnSe)0.14 Heterostructure. Alternative Energy and Ecology (ISJAEE). 2019;(10-12):43-51. (In Russ.) https://doi.org/10.15518/isjaee.2019.10-12.043-051