OPTIMIZATION OF LASER SCRIBING IN MANUFACTURING OF THIN FILM SOLAR MODULES
https://doi.org/10.15518/isjaee.2015.19.012
Abstract
The paper presents the mechanism of absorption of dual laser pulse radiation by thin film of the ZnO, a-Si:H-based solar module. The authors of this paper theoretically justify the possibility of using mode of dual laser scribing of thin-film solar module (TFSM) at production stage and consider implementation of TFSM dual laser scribing. The duality is created by an additional channel of single laser pulse delay. Optic fiber serves as the delay channel. Moreover, the authors analyze the absorption of the first and second cycle of the laser pulse by TFSM thin film. The first pulse cycle is required for heating up the film to reduce the temperature gradient during the second pulse cycle absorption. The conditions of the second cycle absorption change due to the heating up by the first one. The change of this condition for the second cycle is in the laser radiation absorption range.
About the Authors
F. S. EgorovRussian Federation
graduate student, assistant, Chuvash State University named after I.N. Ulyanov
V. A. Mukin
Russian Federation
PhD (physics and mathematics), assistant professor of Chuvash State University named after I.N. Ulyanov
G. P. Ohotkin
Russian Federation
DSc (engineering), professor of Chuvash State University named after I.N. Ulyanov.
References
1. Cremers D.A., Radziemski L.J., Loree T.R. Spec-trochemical analysis of liquids using the laser spark. Ap-plied Spectroscopy, 1984, vol. 38, no. 5, pp. 721–729 (in Eng.).
2. Weidman M. Nd: YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films. Opt Express, 2010, vol. 18, no 1, pp. 259–266 (in Eng.).
3. Babushok V.I. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal en-hancement. Spectrochimi Acta Part B: Ato. Spec., 2006. vol. 61, no. 9, pp. 999–1014 (in Eng.).
4. Bovatsek J. Thin film removal mechanisms in ns-laser processing of photovoltaic materials. Thin Solid Films, 2010, vol. 518, no. 10, pp. 2897–2904 (in Eng.).
5. RefractiveIndex.info. Available at: Režim dostupa: http://refractiveindex.info/?shelf=main&book=ZnO&page=Bond-o (data obraŝeniâ: 26.03.2015) (in Eng.).
6. Adikaari A.A.D.T., Silva S.R.P. Thickness de-pendence of properties of excimer laser crystallized nano-polycrystalline silicon. J. Appl. Phys., 2005, vol. 97, no. 11. Article number 114305 (in Eng.).
7. Forsh P.A. Optičeskie i èlektričeskie svojstva sis-tem, soderžaŝih ansambli kremnievyh nanokristallov: DSc thesis (physics and mathematics). Moscow, 2014, pp. 41–43 (in Russ.).
8. Afanasʹev V.P. Vliânie termoobrabotki na strukturu i svojstva plenok a-Si:H, polučennyh metodom cikličeskogo osaždeniâ. Fizika i tehnika poluprovodni-kov, 2002, v. 36, no. 2, pp. 238–244 (in Russ.).
9. Golikova O.A. Strukturnaâ setka kremniâ v plenkah a-Si:H, soderžaŝih uporâdočennye vklûčeniâ. Fizika i tehnika poluprovodnikov, 2001, vol. 35, no. 5, pp. 600–604 (in Russ.).
10. Afanasʹev V.P., Terukov E.I., Sherchenkov A.A. Tonkoplenočnye solnečnye èlementy na osnove kremniâ. SPb.: Izd-vo SPbGÈTU «LÈTI» Publ., 2011 (in Russ.).
11. Humayun Q., Kashif M., Hashim U. Structural, Optical, Electrical, and Photoresponse Properties of Postan-nealed Sn-Doped ZnO Nanorods. Journal of Na-nomaterials, 2013, vol. 2013, no. 160, pp. 1–8 (in Eng.).
12. Degheidy A.R., Elkenany E.B. Theoretical Inves-tigation of the Energy Gaps Temperature Dependence in Zinc-Blende GaP and InP Semiconductors at Normal Pressure. The African Review of Physics, 2012, vol. 7, no. 14, pp. 145–163 (in Eng.)
13. Herve P., Vandamme L.K.J. General relation be-tween refractive index and energy gap in semiconductors. Infrared Phys. Technol., 1994, vol. 35, no. 4., pp. 609–615 (in Eng.).
14. Lapshinov B.A., Magunov A. N. Ustanovka dlâ izmereniâ temperaturnoj zavisimosti pokazatelâ pre-lomleniâ tverdyh tel. Pribory i tehnika, 2010, no. 1, pp. 159–164 (in Russ.).
15. Vejko V.P. Lazernaâ obrabotka plenočnyh mate-rialov. Leningrad: Mašinostroenie Publ., Leningr., otd-nie, 1986 (in Russ.).
16. Jianha Hu, Gordon R.G. Chemical vapor deposition of highly transparent and conductive boron doped zinc oxide thin films. MRS Proceedings, 1992, vol. 242, pp. 737–743 (in Eng.).
17. Look D.C. Electrical properties of bulk ZnO. Solid State Communications, 1998, vol. 105, no. 6, pp. 399–401 (in Eng.).
18. Schiff E.A. Transport, Interfaces, and Modeling in Amorphous Silicon Based Solar Cells. NREL, 2008, SR-520-44101 (in Eng.).
Review
For citations:
Egorov F.S., Mukin V.A., Ohotkin G.P. OPTIMIZATION OF LASER SCRIBING IN MANUFACTURING OF THIN FILM SOLAR MODULES. Alternative Energy and Ecology (ISJAEE). 2015;(19):88-94. (In Russ.) https://doi.org/10.15518/isjaee.2015.19.012