

Theoretical Study of Hydrogen-Sorption Properties of Lithium and Magnesium Borocarbides
https://doi.org/10.15518/isjaee.2019.13-15.52-61
Abstract
The statistical theory of hydrogen-sorption properties of compounds of alkaline and alkaline-earth metals M(BC)nHx (M = Li, Mg; 0 ≤ x ≤ 12, n = 1,2) has been developed in this paper in the expectation that such hydrogenated boron carbides will be the reliable materials for the reversible accumulation and storage of hydrogen in large quantities in perspective. The calculation of free energy of these crystals has been performed on the basis of molecular-kinetic notions, the equation of thermodynamic equilibrium of such system, determining the P-T-c phase diagram, has been derived in the present paper. The hydrogen solubility in these compounds has been ascertained in dependence on temperature and external pressure, the possibility of manifestation of hysteresis effect has been justified. The derived formulae allow to establish the P, T-conditions of high hydrogen content in boron carbide systems and can permit to select the optimum composition of material choosing for hydrogen storage, the regime of technological process, to develop the experimental technology for solving of the practical problems, if in this case the energetic parameters of these materials are known from independent experiments.
About the Authors
S. Yu. ZaginaichenkoUkraine
Svetlana Zaginaichenko - D.Sc. in Physics and Mathematics, Professor, Senior Researcher at Laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation”
3 Krzhyzhanovsky Str., Kiev, 03142
D. A. Zaritskii
Ukraine
13 Nauchnaya Str., Dnepropetrovsk, 49050
D. V. Schur
Ukraine
Dmitry Schur - Ph.D. in Chemistry, Professor, Chief of Laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation”
3 Krzhyzhanovsky Str., Kiev, 03142
Z. A. Matysina
Ukraine
3 Krzhyzhanovsky Str., Kiev, 03142
N. Veziroglu
United States
T. Nejat Veziroglu – Ph.D. in Heat Transfer, Professor, President of International Association for Hydrogen Energy, a member of 18 scientific organizations
13 Nauchnaya Str., Dnepropetrovsk, 49050
M. V. Chymbai
Ukraine
3 Krzhyzhanovsky Str., Kiev, 03142
L. I. Kopylova
Ukraine
3 Krzhyzhanovsky Str., Kiev, 03142
References
1. Namagatsu J., Nakagawa N., Muranaka Y., Zenitani T., Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature, 2001;410:63–4.
2. Rosner H., Kitaigorodsky A., Pickett W.E. Prediction of high Tc superconductivity in hole-doped LiBC. Phys. Rev. Lett., 2002;88:127001. 1-4.
3. Wörle M., Nesper R. MgB2C2, a new graphite-related refractory compound. J Alloys Compd, 1994;216:75–83.
4. Wörle M., Nesper R., Mair G., Schwarz M., Schnering H.G. LiBC e a completely intercalated heterographite. Z Anorg Allg Chem., 1995;621:1153–9.
5. Pronin A.V., Pucher K., Lunkenheimer P., Krimmel A., Loidl A. Electronic and optical properties of LiBC. Phys. Rev B, 2003;67:132502. 1-4.
6. Mickelson W., Cumings J., Han W.Q., Zettl A. Effects of carbon doping on superconductivity in magnesium diboride. Phys Rev B, 2002;65:052505. 1-3.
7. Zhao L., Klavins P., Liu K. Synthesis and properties of hole-doped Li1-xBC. J Appl Phys, 2003;93:8653–5.
8. Emori S., Takahashi Y., Takano Y., Takase K., Watanabe T. Process for producing hole doped lithium borocarbide. Patent WO 2009028505 A1. 2008.
9. Ai Q., Fu Z.J., Cheng Y., Chen M.L. Electronic structure and thermodynamic properties of LiBC under high pressure. Chin Phys B, 2008;17:2639.
10. Saengdeejing A., Wang Y., Liu Z.K. Structural and thermodynamic properties of compounds in the Mg– B–C system from first-principles calculations. Intermetallics, 2010;18:803–8.
11. Nesper R. New electrode materials, in particular for rechargeable lithium ion batteries. Patent US 20110020706 A1. 2011.
12. Liu Z.L., Chen Y., Tan N.N., Gou Q.Q. First-principle calculations for thermodynamic properties of LiBC under high temperature and high pressure. Commun Theor Phys., 2006;46:573.
13. Lazicki A., Yoo C.S., Cynn H., Evans W.J., Pickett W.E., Olamit J., et al. Search for superconductivity in LiBC at high pressure: diamond anvil cell experiments and first-principles calculations. Phys Rev B, 2007;75:054507. 1-6.
14. Wörle M., Fischbach U., Widmer D., Krumeich F., Nesper R., Evers J., et al. The high-pressure phase of MgB2C2. J Inorg Gen Chem, 2010;636:2543–9.
15. Langer T., Dupke S., Dippel C., Winter M., Eckert H., Pöttgen R. LiBC–synthesis, electrochemical and solid-state NMR investigations. Z Naturforsch., 2012;67b:1212–20.
16. Caputo R. Exploring the structure-composition phase space of lithium borocarbide, LixBC for x ≤ 1. RSC Adv 2013;3:10230–41.
17. Krumeich F., Wörle M., Reibisch P., Nesper R. Characterization of LiBC by phase-contrast scanning transmission electron microscopy. Micron, 2014;63:64–8.
18. Nesper R. Structure and chemical bonding in Zintl-phases containing lithium. Solid St Chem., 1990;20:1–45.
19. Ramirez R., Nesper R., Schnering H.G., Bohm M.C. Structure and chemical bonding in Zintl-phases containing lithium. Z Naturforsch., 1987;A42:670.
20. Mair G. On the lithiumeboron system [Ph.D. diss]. University of Stuttgart; 1984.
21. Hlinka J., Zelezn'y V., Gregora I., Pokorn'y J., Fogg A.M., Claridge J.B., et al. Vibrational properties of hexagonal LiBC: Infrared and Raman spectroscopy. Phys Rev B, 2003;68:220510. 1-4.
22. Hlinka J., Gregora I., Pronin A.V., Loidl A. LiBC by polarized Raman spectroscopy: evidence for lower crystal symmetry. Phys Rev B 2003;67:020504. 1-4.
23. Souptel S., Hossain Z., Behr G., Löser W., Geibel C. Synthesis and physical properties of LiBC intermetallics. Solid St Commun, 2003;125:17–21.
24. Kobayashi K., Arai M. LiBC and related compounds under high pressure. Phys C, 2003;388–389:201–2.
25. Renker B., Schober H., Adelmann P., Schweiss P., Bohnen K.P., Heid R. Lattice dynamics of LiBC. Phys Rev B, 2004:69.
26. Kudo T., Nakamori Y., Orimo S., Badica P., Togano K. Hydrogen effect on synthesis processes and electrical resistivities of LiBC. J Jpn Inst Met., 2005;69:433–8.
27. Liu K, Klavins P, Zhao L. Synthesis of LiBC and hole-doped Li1-xBC. Patent US 7144562 B2. 2006.
28. Fogg A.M., Darling G.R., Claridge J.B., Meldrum J., Rosseinsky M.J. The chemical response of main-group extended solids to formal mixed valency: the case of LixBC. Phil Trans R Soc A, 2008;366:55–62.
29. Ravindran P., Vajeeston P., Vidya R., Kjekshus A., Fjellvåg H. Detailed electronic structure studies on superconducting MgB2 and related compounds. Phys Rev B, 2001;64:224509. 1-15.
30. Harima H. Energy band structures of MgB2 and related compounds. Phys C, 2002;18:378–81.
31. Mori T., Takayama-Muromachi E. Hole doping of MgB2C2, a MgB2 related [B/C] layered compound. Cur Appl Phys, 2004;4:276–9.
32. Takenobu T., Ito T., Chi Dam Hieu, Prassides K., Iwasa Y. Intralayer carbon substitution in the MgB2 superconductor. Phys Rev B, 2001;64:134513. 1-9.
33. Bharathi A., Balaselvi S.J., Kalavathi S., Reddy G.L.N., Sastry V.S., Hariharan Y., et al. Carbon solubility and superconductivity in MgB2. Phys C Supercond, 2002;370:211–8.
34. Cava R.J., Zandbergen H.W., Inumaru K. The substitutional chemistry of MgB2. Phys C, 2003;385:8–15.
35. Avdeev M., Jorgensen J.D., Ribeiro R.A., Bud'ko S.L., Canfield P.C. Crystal chemistry of carbon-substituted MgB2. Phys C Supercond, 2003;387:301–6.
36. Balaselvi S.J., Gayathri N., Bharathi A., Sastry V.S., Hariharan Y. Peculiarities in the carbon substitution of MgB2. Phys C Supercond, 2004;407:31–8.
37. Kazakov S.M., Puzniak R., Rogacki K., Mironov A.V., Zhigadlo N.D., Jun J., et al. Carbon substitution in MgB2 single crystals: structural and superconducting properties. Phys Rev B, 2004;71:024533. 1-22.
38. Lebe'gue S., Arnaud B., Alouani M. Molecular dynamics simulation and chemical bonding analysis of MgB2C2. Compt Mat Sci., 2006;37:220–5.
39. Yan S.C., Zhou L., Yan G., Wang Q.Y., Lu Y.F. Effect of carbon doping on the formation and stability of MgB2 phase. J. Alloys Compd., 2008;459:452–6.
40. Bengtson A.K., Bark C.W., Giencke J., Dai W., Xi X., Eom C.B., et al. Impact of substitutional and interstitial carbon defects on lattice parameters in MgB2. J Appl Phys., 2010;107:023902. 1-4.
41. Kang D.B. Structural arrangements and bonding analysis of MgB2C2. Bull Korean Chem Soc., 2010;31:2565–70.
42. Bohnenstiehl S.D. Thermal analysis, phase equilibria, and superconducting properties in MgB2 and carbon doped MgB2. Ohio: Ohio State University; 2012.
43. Yan H., Zhang M., Wei Q., Guo P. Ab initio studies of ternary semiconductor BeB2C2. Compt Mat Sci., 2013;68:174–80.
44. Zuttel A. Smart carbon-based materials for hydrogen storage. Dubendorf, Switzerland: EMPA Project 130509; 2013.
45. Liu P., Vajo J.J. Thermodynamically tuned nanophase materials for reversible hydrogen storage. Washington: Project review ID #ST18; 2007.
46. Churchard A.J., Banach E., Borgschulte A., Caputo R., Chen J.C., Clary D., et al. A multifaceted approach to hydrogen storage. Phys Chem Chem Phys., 2011;13:16955–72.
47. Nakamori Y., Orimo S. Synthesis and characterization of single phase LixBC (x = 0.5 and 1.0), using Li hydride as a starting material. J Alloys Comp., 2004;370:L7–9.
48. Klebanoff L., Keller J. 5 years of hydrogen storage research in US DOE Metal Hydride Center of Excellence. Int J Hydrogen Energy, 2013;38:4533–76.
49. Reibisch P. Low-dimensional compounds and composites for lithium exchange as well as for electronic and for ionic conductivity enhancement [Ph.D. diss]. No 21946. Zurich, Germany. 2014.
50. Albert B., Schmitt K. CaB2C2: reinvestigation of a semiconducting boride carbide with a layered structure and an interesting boron/carbon ordering scheme. Inorg Chem., 1990;38:6159–63.
51. Smirnov A.A. Theory of interstitial alloys. Moscow: Nauka; 1979 [in Russian].
52. Smirnov A.A. Generalized theory of alloys ordering. Kiev: Naukova Dumka; 1986 [in Russian].
53. Smirnov A.A. Theory of phase transformations and arrangement of atoms in interstitial alloys. Kiev: Naukova Dumka; 1992 [in Russian].
54. Matysina Z.A., Schur D.V. Hydrogen and solid phase transformations in metals, alloys and fullerites. Dnepropetr Nauka i Obraz., 2002 [in Russian].
55. Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Solubility of admixtures in metals, alloys, intermetallic compounds, fullerites. Dnepropetr Nauka i Obraz., 2006 [in Russian].
56. Schur D.V., Zaginaichenko S.Yu., Matysina Z.A., Pishuk V.K. Hydrogen in lanthanum-nickel storage alloys. J Alloys Compd., 2002;330–2:70–5.
57. Zaginaichenko S.Yu., Matysina Z.A., Schur D.V. Hydrogen in lanthanum-magnesium-nickel alloys of L22, D2d, L60 structures. Phys Metals Latest Technol., 2007;104:453–64.
58. Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Hydrogen sorption properties of magnesium intermetallics. Nanosyst Nanomater Nanotechnologies, 2012;37:883–93.
Review
For citations:
Zaginaichenko S.Yu., Zaritskii D.A., Schur D.V., Matysina Z.A., Veziroglu N., Chymbai M.V., Kopylova L.I. Theoretical Study of Hydrogen-Sorption Properties of Lithium and Magnesium Borocarbides. Alternative Energy and Ecology (ISJAEE). 2019;(13-15):52-61. https://doi.org/10.15518/isjaee.2019.13-15.52-61