

Low-temperature partial oxidation of ethanol on Ni/ZnO catalyst
https://doi.org/10.15518/isjaee.2019.16-18.27-36
Abstract
The paper investigates the partial oxidation of ethanol process in a quartz microreactor at atmospheric pressure in the temperature range 300–450 °C on a nickel catalyst (20 wt%) deposited on zinc oxide. Rectified ethanol (an azeotropic mixture of 95.6 wt.% ethanol and 4.4 wt.% water) is fed into the reactor at a rate of 0.4–1.3 g / hour by a peristaltic pump, first into the evaporator, and then as a gas phase into the reactor. Air is used as a source of oxygen which is supplied by an air pump to the reactor and its flow is controlled by a rotameter so that the oxygen-ethanol molar ratio varied between 0.45 and 2.0. The nickel catalyst is prepared by impregnating industrial zinc oxide powder with nickel nitrate, followed by calcination and reduction of nickel oxide to metallic nickel. Analysis of gaseous products is performed on a Tsvet-500 gas chromatograph. The detector is a katharometer.
A catalyst Ni/ZnO developed earlier is shown to have high efficiency in the partial oxidation of ethanol at low temperatures. The main products of this process are hydrogen, methane, carbon monoxide and dioxide. With an increase in the oxygen-ethanol molar ratio, the hydrogen content in the products of the process decreases (from 60 to 25 vol.%), carbon dioxide, on the contrary, increases (26 to 65 vol.%). The hydrogen yield is 1 mol per 1 mol of ethanol at a temperature of 450 °C.
Carbon monoxide is observed with a low ratio of oxygen-ethanol (up to 0.85). With a higher ratio, carbon monoxide is absent in the entire temperature range studied. The conversion of ethanol proceeds intensively and already at a temperature of 450 °C ethanol is converted almost completely. A high methane content (20–30% vol.%) in reforming products indicates that the initial stage of the process is the oxidation of ethanol followed by decomposition of the resulting acetaldehyde into methane and carbon monoxide.
The insignificant water content in the supply mixture leads to an almost complete absence of a shift reaction. Carbon monoxide is then oxidized with oxygen to carbon dioxide. The reduced methane content in comparison with the process of water-steam ethanol reforming can be explained by its partial oxidation to carbon dioxide, which explains the high content of the latter in reforming products.
Keywords
About the Authors
N. V. LapinRussian Federation
Ph.D. in Engineering, Senior Researcher,
6 Academician Osipyan Str., Chernogolovka, Moscow Reg., 142432
V. V. Grinko
Russian Federation
Ph.D. in Chemistry, Junior Researcher,
6 Academician Osipyan Str., Chernogolovka, Moscow Reg., 142432
V. S. Bezhok
Russian Federation
Junior Researcher,
6 Academician Osipyan Str., Chernogolovka, Moscow Reg., 142432
A. F. Vyatkin
Russian Federation
D.Sc. in Physics and Mathematics, Professor, Deputy Director,
6 Academician Osipyan Str., Chernogolovka, Moscow Reg., 142432
References
1. Edwards P.P., Kuznetsov V.L., David W.I.F., Brandon N.P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy, 2008;36(12):4356–4362.
2. Frusteri F., Bonura G. Hydrogen production by reforming of bio-alcohols. Compendium of Hydrogen Energy, Chapter 3, Woodhead Publishing, 2015; pp.109–136.
3. Llorca J., Corberan V. C., Divins N.J. , Fraile R. O., Taboada E. Hydrogen from Bioethanol. Renewable Hydrogen Technologies, Chapter 7, Elsevier Science, 2013; pp.135–169.
4. Contreras J.L., Salmones J., Colı́n-Luna J.A., Nuno L., Quintana B., Cordova I., Zeifert B., Tapia C., Fuentes G.A. Catalysts for H2 production using the ethanol steam reforming (a review). Int. J. Hydrogen Energy, 2014;39(33):18835–18853.
5. Hou T., Zhang S., Chen Y., Wang D., Cai W. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. Renewable and Sustainable Energy Reviews, 2015;44:132–148.
6. Nikolaidis P., Poullikkas A. A comparative over view of hydrogen production processes. Renewable and Sustainable Energy Reviews, 2017;67:597–611.
7. Khila Z., Hajjaji N., Pons M-N., Renaudin V., Houas A. A comparative study on energetic and exergetic assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal reforming processes. Fuel Processing Technology, 2013;112:19–27.
8. Schmal M., Cesar D.V., Souza M.M.V.M., Guarido C. E.M. Drifts and TPD Analyses of Ethanol on Pt Catalysts Over Al2O3 and ZrO2—Partial Oxidation of Ethanol. Can. J. Chem. Eng., 2011;89(5):1166–1175.
9. Lima S.M. de, Cruz I.O. da, Jacobs G., Davis B. H., Mattos L. V., Noronha F. B. Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. J. of Catalysis, 2008;257(2):356–368.
10. Salge J.R., Deluga G.A., Schmidt L.D. Catalytic partial oxidation of ethanol over noble metal catalysts. J. of Catalysis, 2005;235(1):69–78.
11. Tóth M., Varga E., Oszkó A., Baán K., Kiss J., Erdohelyi A. Partial oxidation of ethanol on supported Rh catalysts: Effect of the oxide support. J. of Molecular Catalysis A: Chemical, 2016;411:377–387.
12. Hebben N., Diehm C., Deutschmann O. Catalytic partial oxidation of ethanol on alumina-supported rhodium catalysts: An experimental study. Applied Catalysis A: General, 2010;388(1–2):225–231.
13. Iulianelli A., Liguori S., Calabro V., Pinacci P., Basile A. Partial oxidation of ethanol in a membrane reactor for high purity hydrogen production. Int. J. Hydrogen Energy, 2010;35(22):12626–12634.
14. Koehle M., Mhadeshwar A. Microkinetic modeling and analysis of ethanol partial oxidation and reforming reaction pathways on platinum at short contact times. Chem. Eng. Sci., 2012;78:209–225.
15. Al-Hamamre Z., Hararah M.A. Hydrogen production by thermal partial oxidation of ethanol: Thermodynamics and kinetics study. Int. J. Hydrogen Energy, 2010;35(11):5367–5377.
16. Wang W., Wang Y. Thermodynamic analysis of hydrogen production via partial oxidation of ethanol. Int. J. Hydrogen Energy, 2008;33(19):5035–5044.
17. Guarido C.E.M., Cesar D.V., Souza M.V.M., Schmal M. Ethanol reforming and partial oxidation with Cu/Nb2O5 catalyst. Catalysis Today, 2009;142(3– 4):252–257.
18. Rodrigues C.P., Schmal M. Nickel-alumina washcoating on monoliths for the partial oxidation of ethanol to hydrogen production. Int. J. Hydrogen Energy, 2011;36(17):10709–10718.
19. Kraleva E., Sokolov S., Schneider M., Ehrich H. Support effects on the properties of Co and Ni catalysts for the hydrogen production from bio-ethanol partial oxidation. Int. J. Hydrogen Energy, 2013;38(11):4380–4388.
20. Rodrigues C.P., Silva V.T. de, Schmal M. Partial oxidation of ethanol over cobalt oxide based cordierite monolith catalyst. Applied Catalysis B: Environmental, 2010;96(1–2):1–9.
21. Kraleva E., Sokolov S., Nasillo G., Bentrup U., Ehrich H. Catalytic performance of CoAlZn and NiAlZn mixed oxides in hydrogen production by bioethanol partial oxidation. Int. J. Hydrogen Energy, 2014;39(1):209–220.
22. Gómez-Cuaspud J.A., Schmal M. Effect of metal oxides concentration over supported cordierite monoliths on the partial oxidation of ethanol. Applied Catalysis B: Environmental, 2014;148:1–10.
23. Carotenuto G., Kumar A., Miller J., Mukasyan A., Santacesaria E., Wolf E.E. Hydrogen production by ethanol decomposition and partial oxidation over copper/copper-chromite based catalysts prepared by combustion synthesis. Catalysis Today, 2013;203:163–175.
24. Rodrigues C.P., Kraleva E., Ehrich H., Noronha F.B. Structured Reactors as an Alternative to Fixed-bed Reactors: Influenceof catalyst preparation methodology on the partial oxidation of ethanol. Catalysis Today, 2016;273:12–24.
25. Hidalgo J.M., Tisler Z., Kubicka D., Raabova K., Bulanek R (V)/Hydrotalcite, (V)/Al2O3, (V)/TiO2 and (V)/SBA-15 catalysts for the partial oxidation of ethanol to acetaldehyde. J. of Molecular Catalysis A: Chemical, 2016;420:178–189.
26. Behravesh E., Kilpiö T., Russo V., Eränen K., Salmi T. Experimental and modelling study of partial oxidation of ethanol in a micro-reactor using gold nanoparticles as the catalyst. Chem. Eng. Sci., 2018;176:421–428.
27. Alberton A.L., Souza M.M.V.M., Schmal M. Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catalysis Today, 2007;123(1–4):257–267.
28. Homs N., Llorca J., Piscina P.R. de la Lowtemperature steam-reforming of ethanol over ZnOsupported Ni and Cu catalysts The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts. Catalysis Today, 2006;116(3):361–366.
29. Noronha F.B., Durao M.C., Batista M.S., Appel L.G. The role of Ni on the performance of automotive catalysts: evaluating the ethanol oxidation reaction. Catalysis Today, 2003;85(1):13–21.
30. Lima S.M. de, Silva A.M. da, Costa L.O.O. da, Graham U.M., Jacobs G., Davis B.H., Mattos L.V., Noronha F.B. Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. J. of Catalysis, 2009;268(2):268–281.
31. Llorca J., Piscina P.R. de la, Dalmon J-A., Sales J., Homs N. CO-free hydrogen from steamreforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor. Applied Catalysis B: Environmental, 2003;43(4):355–369.
32. Lapin N.V., Red'kin A.N., Bezhok V.S., Vyatkin A.F. Production of hydrogen by catalytic pyrolysis of ethanol on a Nickel catalyst (Poluchenie vodoroda kataliticheskim pirolizom etanola na nikelevom katalizatore). Russian Journal of Physical Chemistry A: Focus on Chemistry, 2009;83(11):1855–1859.
33. Lapin N.V., Bezhok V.S. Low-temperature reforming of ethanol on Nickel-copper catalyst (Nizkotemperaturnyi reforming etanola na nikel'-mednom katalizatore). Russian Journal of Applied Chemistry, 2011;84(6):1007–1011.
34. Lapin N.V., Bezhok V.S., Vyatkin A.F. Hydrogen production for fuel cell supply by lowtemperature ethanol conversion on Ni/ZnO and NiCu/ZnO catalysts (Poluchenie vodoroda dlya pitaniya toplivnykh elementov nizkotemperaturnoi konversiei etanola na katalizatorakh Ni/ZnO i Ni-Cu/ZnO). Russian Journal of Applied Chemistry, 2014;87(5):608–612.
35. Lapin N.V., Bezhok V.S., Grinko V.V., Vyatkin A.F. The choice of catalyst substrate to reduce the content of carbon monoxide in the reforming of ethanol (Vybor nositelya katalizatora dlya snizheniya soderzhaniya monookisi ugleroda pri reforminge etanola). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;(21);216–221 (in Russ.).
36. Grinko V.V., Bezhok V.S., Lapin N.V., Vyatkin A.F. Low-temperature water-steam ethanol conversion on Ni/ZnO catalyst in microchannel reactor (Nizkotemperaturnaya vodnoparovaya konversiya etanola na katalizatore Ni/ZnO v mikrokanal'nom reaktore). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;(15–18);112–121 (in Russ.).
37. Lapin N.V., Grinko V.V., Bezhok V.S., Vyatkin A.F. Hydrogen production by low-temperature oxidative water-steam ethanol reformingon Ni / ZnO catalyst (Polucheniye vodoroda nizkotemperaturnym okislitel'nym vodno-parovym reformingom etanola na katalizatore Ni/ZnO). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2019;(7– 9);62–72 (in Russ.).
Review
For citations:
Lapin N.V., Grinko V.V., Bezhok V.S., Vyatkin A.F. Low-temperature partial oxidation of ethanol on Ni/ZnO catalyst. Alternative Energy and Ecology (ISJAEE). 2019;(16-18):27-36. (In Russ.) https://doi.org/10.15518/isjaee.2019.16-18.27-36